32 research outputs found

    South China Sea hydrological changes and Pacific Walker Circulation variations over the last millennium

    Get PDF
    © Macmillan Publishers Limited, 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 2 (2011): 293, doi:10.1038/ncomms1297.The relative importance of north–south migrations of the intertropical convergence zone (ITCZ) versus El Niño-Southern Oscillation and its associated Pacific Walker Circulation (PWC) variability for past hydrological change in the western tropical Pacific is unclear. Here we show that north–south ITCZ migration was not the only mechanism of tropical Pacific hydrologic variability during the last millennium, and that PWC variability profoundly influenced tropical Pacific hydrology. We present hydrological reconstructions from Cattle Pond, Dongdao Island of the South China Sea, where multi-decadal rainfall and downcore grain size variations are correlated to the Southern Oscillation Index during the instrumental era. Our downcore grain size reconstructions indicate that this site received less precipitation during relatively warm periods, AD 1000–1400 and AD 1850–2000, compared with the cool period (AD 1400–1850). Including our new reconstructions in a synthesis of tropical Pacific records results in a spatial pattern of hydrologic variability that implicates the PWC.This work was supported by the Natural Science Foundation of China (NSFC) (40730107) and the Major State Basic Research Development Program of China (973 Program) (No.2010CB428902). DWO acknowledges support from the US NSF

    Climate Change in Lowland Central America During the Late Deglacial and Early Holocene

    Get PDF
    The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition ({approx}11,250 to 7,500 cal yr BP) inferred from sediment cores retrieved in Lake Peten Itza, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by {approx}11,250 cal yr BP, but sediment properties indicate that lake level was more than 35 m below modern stage. From 11,250 to 10,350 cal yr BP, during the Preboreal period, lithologic changes in sediments from deep-water cores (>50 m below modern water level) indicate several wet-dry cycles that suggest distinct changes in effective moisture. Four dry events (designated PBE1-4) occurred at 11,200, 10,900, 10,700, and 10,400 cal yr BP and correlate with similar variability observed in the Cariaco Basin titanium record and glacial meltwater pulses into the Gulf of Mexico. After 10,350 cal yr BP, multiple sediment proxies suggest a shift to a more persistently moist early Holocene climate. Comparison of results from Lake Peten Itza with other records from the circum-Caribbean demonstrates a coherent climate response during the entire span of our record. Furthermore, lowland Neotropical climate during the late deglacial and early Holocene period appears to be tightly linked to climate change in the high-latitude North Atlantic. We speculate that the observed changes in lowland Neotropical precipitation were related to the intensity of the annual cycle and associated displacements in the mean latitudinal position of the Intertropical Convergence Zone and Azores-Bermuda high-pressure system. This mechanism operated on millennial-to-submillennial timescales and may have responded to changes in solar radiation, glacial meltwater, North Atlantic sea ice, and the Atlantic meridional overturning circulation (MOC)

    Climate change in lowland Central America during the late deglacial and early Holocene

    Get PDF
    The transition from arid glacial to moist early Holocene conditions represented a profound change in northern lowland Neotropical climate. Here we report a detailed record of changes in moisture availability during the latter part of this transition (11 250 to 7500 cal. yr BP) inferred from sediment cores retrieved in Lake Pete´n Itza´, northern Guatemala. Pollen assemblages demonstrate that a mesic forest had been largely established by 11 250 cal. yr BP, but sediment properties indicate that lake level was more than 35m below modern stage. From 11 250 to 10 350 cal. yr BP,during the Preboreal period, lithologic changes in sediments from deep-water cores (>50m below modern water level) indicate several wet–dry cycles that suggest distinct changes in effective moisture. Four dry events (designated PBE1-4) occurred centred at 11 200, 10 900, 10 700 and 10 400 cal. yr BP and correlate with similar variability observed in the Cariaco Basin titanium record and glacial meltwater pulses into the Gulf of Mexico. After 10 350 cal. yr BP, multiple sediment proxies suggest a shift to a more persistently moist early Holocene climate. Comparison of results from Lake Pete´n Itza´ with other records from the circum-Caribbean demonstrates a coherent climate response during the entire span of our record. Furthermore, lowland Neotropical climate during the late deglacial and early Holocene period appears to be tightly linked to climate change in the highlatitude North Atlantic. We speculate that the observed changes in lowland Neotropical precipitation were related to the intensity of the annual cycle and associated displacements in the mean latitudinal position of the Intertropical Convergence Zone and Azores–Bermuda high-pressure system. This mechanism operated on millennial-to-submillennial timescales and may have responded to changes in solar radiation, glacial meltwater, North Atlantic sea ice, and the Atlantic meridional overturning circulatio

    α1- and α2-adrenergic vasoconstriction is blunted in contracting human muscle

    No full text
    Sympathetic vasoconstriction is blunted in the vascular beds of contracting skeletal muscles. We sought to determine whether this blunted vasoconstriction is specific for post-junctional α1- or α2-adrenergic receptors. We measured forearm blood flow (Doppler ultrasound) and calculated the vascular conductance (FVC) responses to brachial artery infusions of tyramine (which evokes endogenous noradrenaline release), phenylephrine (an α1 agonist) and clonidine (an α2 agonist) in 10 healthy men during rhythmic handgrip exercise (10-15 % of maximum) and during a control non-exercise vasodilator condition (intra-arterial adenosine). Steady-state FVC during exercise and adenosine was similar in all trials (range: 243-272 and 234-263 ml min−1 (100 mmHg)−1, respectively; P > 0.5). During exercise the percentage reductions in FVC in response to tyramine (−24 ± 7 vs.−55 ± 6 %), phenylephrine (−12 ± 8 vs.−37 ± 8 %) and clonidine (−17 ± 6 vs.−49 ± 4 %) were significantly less compared with adenosine (all P < 0.05). The magnitude of the blunted vasoconstrictor responses was similar for both receptor subtypes. These findings are in contrast to those from studies in animals demonstrating that α2-adrenergic receptor-mediated vasoconstrictor responses are much more sensitive to contraction-induced inhibition than α1-mediated responses. We conclude that vasoconstrictor responses mediated via both post-junctional α1- and α2-adrenergic receptors are blunted in contracting human skeletal muscles

    Drought variability in the Pacific Northwest from a 6,000-yr lake sediment record

    No full text
    We present a 6,000-yr record of changing water balance in the Pacific Northwest inferred from measurements of carbonate δ18O and grayscale on a sediment core collected from Castor Lake, Washington. This subdecadally resolved drought record tracks the 1,500-yr tree-ring-based Palmer Drought Severity Index reconstructions of Cook et al. [Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004) Science 306:1015–1018] in the Pacific Northwest and extends our knowledge back to 6,000 yr B.P. The results demonstrate that low-frequency drought/pluvial cycles, with occasional long-duration, multidecadal events, are a persistent feature of regional climate. Furthermore, the average duration of multidecadal wet/dry cycles has increased since the middle Holocene, which has acted to increase the amplitude and impact of these events. This is especially apparent during the last 1,000 yr. We suggest these transitions were driven by changes in the tropical and extratropical Pacific and are related to apparent intensification of the El Niño Southern Oscillation over this interval and its related effects on the Pacific Decadal Oscillation. The Castor Lake record also corroborates the notion that the 20th century, prior to recent aridity, was a relatively wet period compared to the last 6,000 yr. Our findings suggest that the hydroclimate response in the Pacific Northwest to future warming will be intimately tied to the impact of warming on the El Niño Southern Oscillation
    corecore