2,315 research outputs found

    Development of an empirically based dynamic biomechanical strength model

    Get PDF
    The focus here is on the development of a dynamic strength model for humans. Our model is based on empirical data. The shoulder, elbow, and wrist joints are characterized in terms of maximum isolated torque, position, and velocity in all rotational planes. This information is reduced by a least squares regression technique into a table of single variable second degree polynomial equations determining the torque as a function of position and velocity. The isolated joint torque equations are then used to compute forces resulting from a composite motion, which in this case is a ratchet wrench push and pull operation. What is presented here is a comparison of the computed or predicted results of the model with the actual measured values for the composite motion

    Superconductivity in 2-2-3 system Y2Ba2Cu2O(8+delta)

    Get PDF
    Researchers synthesized a new high T(sub c) 2-2-3 superconductor Y2Ba2Cu3O(8+delta) by a special preparation technique and characterized it by ac-susceptibility measurements. Diamagnetism and Meissner effect sets in at low fields and superconducting transition onsets at 90 K. The systematic investigation of the real and imaginary components of ac-susceptibility as a function of temperature and applied ac magnetic field reveals that the magnetic behavior is that of a granular type superconductor

    QQˉQ\bar Q (Q∈{b,c}Q\in \{b, c\}) spectroscopy using Cornell potential

    Full text link
    The mass spectra and decay properties of heavy quarkonia are computed in nonrelativistic quark-antiquark Cornell potential model. We have employed the numerical solution of Schr\"odinger equation to obtain their mass spectra using only four parameters namely quark mass (mcm_c, mbm_b) and confinement strength (AccˉA_{c\bar c}, AbbˉA_{b\bar b}). The spin hyperfine, spin-orbit and tensor components of the one gluon exchange interaction are computed perturbatively to determine the mass spectra of excited SS, PP, DD and FF states. Digamma, digluon and dilepton decays of these mesons are computed using the model parameters and numerical wave functions. The predicted spectroscopy and decay properties for quarkonia are found to be consistent with available experimental observations and results from other theoretical models. We also compute mass spectra and life time of the BcB_c meson without additional parameters. The computed electromagnetic transition widths of heavy quarkonia and BcB_c mesons are in tune with available experimental data and other theoretical approaches

    CFD Computations for a Generic High-Lift Configuration Using TetrUSS

    Get PDF
    Assessment of the accuracy of computational results for a generic high-lift trapezoidal wing with a single slotted flap and slat is presented. The paper is closely aligned with the focus of the 1st AIAA CFD High Lift Prediction Workshop (HiLiftPW-1) which was to assess the accuracy of CFD methods for multi-element high-lift configurations. The unstructured grid Reynolds-Averaged Navier-Stokes solver TetrUSS/USM3D is used for the computational results. USM3D results are obtained assuming fully turbulent flow using the Spalart-Allmaras (SA) and Shear Stress Transport (SST) turbulence models. Computed solutions have been obtained at seven different angles-of-attack ranging from 6 -37 . Three grids providing progressively higher grid resolution are used to quantify the effect of grid resolution on the lift, drag, pitching moment, surface pressure and stall angle. SA results, as compared to SST results, exhibit better agreement with the measured data. However, both turbulence models under-predict upper surface pressures near the wing tip region

    An analytical study of abnormal uterine bleeding in women of child bearing age group

    Get PDF
    Background: AUB (abnormal uterine bleeding) is defined as any variation from the normal menstrual cycle including alteration in its frequency, regularity of menses, duration of flow and amount of blood loss. In India, the reported prevalence of AUB is 17.9%. It can occur any time between menarche to menopause. A good clinician tries to recognize and identify the causative factors responsible for the disease, reverse the abnormality and induce or restore the cyclic predictable menses which should have normal volume and duration.Methods: 200 cases of AUB fitting the selection criteria were taken from OPD and gynecology ward between September 2020 to June 2021.Results: AUB was more common in the age group 41-45 years, that is, perimenopausal age group, more in multiparous women and women with previous surgeries on uterus and adnexa. Heavy menstrual bleeding was the most common complaint. Endometrial hyperplasia was the most common finding on ultrasound examination. Medical therapy was beneficial in some patients, rest had to undergo surgical intervention later.Conclusions: Transvaginal sonography is very accurate in assessing the endometrium as well as uterus and adnexa and diagnosing their abnormalities. Medical therapy is the first line of management in most cases. Dilatation and curettage should be used along with hysteroscopy for better results. LNG-IUS gives very good result in suitable cases. Hysterectomy is the final measure if everything else fails. Vaginal hysterectomy is preferred wherever possible

    Toward Verification of USM3D Extensions for Mixed Element Grids

    Get PDF
    The unstructured tetrahedral grid cell-centered finite volume flow solver USM3D has been recently extended to handle mixed element grids composed of hexahedral, prismatic, pyramidal, and tetrahedral cells. Presently, two turbulence models, namely, baseline Spalart-Allmaras (SA) and Menter Shear Stress Transport (SST), support mixed element grids. This paper provides an overview of the various numerical discretization options available in the newly enhanced USM3D. Using the SA model, the flow solver extensions are verified on three two-dimensional test cases available on the Turbulence Modeling Resource website at the NASA Langley Research Center. The test cases are zero pressure gradient flat plate, planar shear, and bump-inchannel. The effect of cell topologies on the flow solution is also investigated using the planar shear case. Finally, the assessment of various cell and face gradient options is performed on the zero pressure gradient flat plate case

    PDF model based on Langevin equation for polydispersed two-phase flows applied to a bluff-body gas-solid flow,

    Full text link
    The aim of the paper is to discuss the main characteristics of a complete theoretical and numerical model for turbulent polydispersed two-phase flows, pointing out some specific issues. The theoretical details of the model have already been presented [Minier and Peirano, Physics Reports, Vol. 352/1-3, 2001 ]. Consequently, the present work is mainly focused on complementary aspects, that are often overlooked and that require particular attention. In particular, the following points are analysed : the necessity to add an extra term in the equation for the velocity of the fluid seen in the case of twoway coupling, the theoretical and numerical evaluations of particle averages and the fulfilment of the particle mass-continuity constraint. The theoretical model is developed within the PDF formalism. The important-physical choice of the state vector variables is first discussed and the model is then expressed as a stochastic differential equation (SDE) written in continuous time (Langevin equations) for the velocity of the fluid seen. The interests and limitations of Langevin equations, compared to the single-phase case, are reviewed. From the numerical point of view, the model corresponds to an hybrid Eulerian/Lagrangian approach where the fluid and particle phases are simulated by different methods. Important aspects of the Monte Carlo particle/mesh numerical method are emphasised. Finally, the complete model is validated and its performance is assessed by simulating a bluff-body case with an important recirculation zone and in which two-way coupling is noticeable.Comment: 23 pages, 10 figure

    Superconductivity in 2-2-3 Y2Ba2Cu3O(sub 8+ delta)

    Get PDF
    Researchers synthesized a new high T(sub c) 2-2-3 superconductor (Y2Ba2Cu3O8+delta) by a special preparation technique and characterized it by ac-susceptibility measurements. Diamagnetism and Meissner effect sets in at low fields and superconducting transition onsets at 90 K. The systematic investigation of the real and imaginary components of ac-susceptibility as a function of temperature and applied ac magnetic field reveals that the magnetic behavior is that of a granular type superconductor

    Measurements and ab initio Molecular Dynamics Simulations of the High Temperature Ferroelectric Transition in Hexagonal RMnO3

    Full text link
    Measurements of the structure of hexagonal RMnO3 (R=rare earths (Ho) and Y) for temperatures significantly above the ferroelectric transition temperature (TFE) were conducted to determine the nature of the transition. The local and long range structural measurements were complemented by ab initio molecular dynamics simulations. With respect to the Mn sites in YMnO3 and HoMnO3, we find no large atomic (bond distances or thermal factors), electronic structure changes or rehybridization on crossing TFE from local structural methods. The local symmetry about the Mn sites is preserved. With respect to the local structure about the Ho sites, a reduction of the average Ho-O bond with increased temperature is found. Ab initio molecular dynamics calculations on HoMnO3 reveal the detailed motions of all ions. Above ~900 K there are large displacements of the Ho, O3 and O4 ions along the z-axis which reduce the buckling of the MnO3/O4 planes. The changes result in O3/O4 ions moving to towards central points between pairs of Ho ions on the z-axis. These structural changes make the coordination of Ho sites more symmetric thus extinguishing the electric polarization. At significantly higher temperatures, rotation of the MnO5 polyhedra occurs without a significant change in electric polarization. The born effective charge tensor is found to be highly anisotropic at the O sites but does not change appreciably at high temperatures
    • …
    corecore