1,832 research outputs found
Non-equilibrium mechanics and dynamics of motor activated gels
The mechanics of cells is strongly affected by molecular motors that generate
forces in the cellular cytoskeleton. We develop a model for cytoskeletal
networks driven out of equilibrium by molecular motors exerting transient
contractile stresses. Using this model we show how motor activity can
dramatically increase the network's bulk elastic moduli. We also show how motor
binding kinetics naturally leads to enhanced low-frequency stress fluctuations
that result in non-equilibrium diffusive motion within an elastic network, as
seen in recent \emph{in vitro} and \emph{in vivo} experiments.Comment: 21 pages, 8 figure
On-site residence time in a driven diffusive system: violation and recovery of mean-field
We investigate simple one-dimensional driven diffusive systems with open
boundaries. We are interested in the average on-site residence time defined as
the time a particle spends on a given site before moving on to the next site.
Using mean-field theory, we obtain an analytical expression for the on-site
residence times. By comparing the analytic predictions with numerics, we
demonstrate that the mean-field significantly underestimates the residence time
due to the neglect of time correlations in the local density of particles. The
temporal correlations are particularly long-lived near the average shock
position, where the density changes abruptly from low to high. By using Domain
wall theory (DWT), we obtain highly accurate estimates of the residence time
for different boundary conditions. We apply our analytical approach to
residence times in a totally asymmetric exclusion process (TASEP), TASEP
coupled to Langmuir kinetics (TASEP + LK), and TASEP coupled to mutually
interactive LK (TASEP + MILK). The high accuracy of our predictions is verified
by comparing these with detailed Monte Carlo simulations
Mechanics and force transmission in soft composites of rods in elastic gels
We report detailed theoretical investigations of the micro-mechanics and bulk
elastic properties of composites consisting of randomly distributed stiff
fibers embedded in an elastic matrix in two and three dimensions. Recent
experiments published in Physical Review Letters [102, 188303 (2009)] have
suggested that the inclusion of stiff microtubules in a softer, nearly
incompressible biopolymer matrix can lead to emergent compressibility. This can
be understood in terms of the enhancement of the compressibility of the
composite relative to its shear compliance as a result of the addition of stiff
rod-like inclusions. We show that the Poisson's ratio of such a composite
evolves with increasing rod density towards a particular value, or {\em fixed
point}, independent of the material properties of the matrix, so long as it has
a finite initial compressibility. This fixed point is in three
dimensions and in two dimensions. Our results suggest an important
role for stiff filaments such as microtubules and stress fibers in cell
mechanics. At the same time, our work has a wider elasticity context, with
potential applications to composite elastic media with a wide separation of
scales in stiffness of its constituents such as carbon nanotube-polymer
composites, which have been shown to have highly tunable mechanics.Comment: 10 pages, 8 figure
The mechanical response of semiflexible networks to localized perturbations
Previous research on semiflexible polymers including cytoskeletal networks in
cells has suggested the existence of distinct regimes of elastic response, in
which the strain field is either uniform (affine) or non-uniform (non-affine)
under external stress. Associated with these regimes, it has been further
suggested that a new fundamental length scale emerges, which characterizes the
scale for the crossover from non-affine to affine deformations. Here, we extend
these studies by probing the response to localized forces and force dipoles. We
show that the previously identified nonaffinity length [D.A. Head et al. PRE
68, 061907 (2003).] controls the mesoscopic response to point forces and the
crossover to continuum elastic behavior at large distances.Comment: 16 pages, 18 figures; substantial changes to text and figures to
clarify the crossover to continuum elasticity and the role of finite-size
effect
Actively Contracting Bundles of Polar Filaments
We introduce a phenomenological model to study the properties of bundles of
polar filaments which interact via active elements. The stability of the
homogeneous state, the attractors of the dynamics in the unstable regime and
the tensile stress generated in the bundle are discussed. We find that the
interaction of parallel filaments can induce unstable behavior and is
responsible for active contraction and tension in the bundle. Interaction
between antiparallel filaments leads to filament sorting. Our model could apply
to simple contractile structures in cells such as stress fibers.Comment: 4 pages, 4 figures, RevTex, to appear in Phys. Rev. Let
Green's Function for Nonlocal Potentials
The single-particle nuclear potential is intrinsically nonlocal. In this
paper, we consider nonlocalities which arise from the many-body and fermionic
nature of the nucleus. We investigate the effects of nonlocality in the nuclear
potential by developing the Green's function for nonlocal potentials. The
formal Green's function integral is solved analytically in two different limits
of the wavelength as compared to the scale of nonlocality. Both results are
studied in a quasi-free limit. The results illuminate some of the basic effects
of nonlocality in the nuclear medium.Comment: Accepted for publication in J. Phys.
Charitable Food Systems' Capacity to Address Food Insecurity: An Australian Capital City Audit.
Australian efforts to address food insecurity are delivered by a charitable food system (CFS) which fails to meet demand. The scope and nature of the CFS is unknown. This study audits the organisational capacity of the CFS within the 10.9 square kilometres of inner-city Perth, Western Australia. A desktop analysis of services and 12 face-to-face interviews with representatives from CFS organisations was conducted. All CFS organisations were not-for⁻profit and guided by humanitarian or faith-based values. The CFS comprised three indirect services (IS) sourcing, banking and/or distributing food to 15 direct services (DS) providing food to recipients. DS offered 30 different food services at 34 locations feeding over 5670 people/week via 16 models including mobile and seated meals, food parcels, supermarket vouchers, and food pantries. Volunteer to paid staff ratios were 33:1 (DS) and 19:1 (IS). System-wide, food was mainly donated and most funding was philanthropic. Only three organisations received government funds. No organisation had a nutrition policy. The organisational capacity of the CFS was precarious due to unreliable, insufficient and inappropriate financial, human and food resources and structures. System-wide reforms are needed to ensure adequate and appropriate food relief for Australians experiencing food insecurity
Bi-defects of Nematic Surfactant Bilayers
We consider the effects of the coupling between the orientational order of
the two monolayers in flat nematic bilayers. We show that the presence of a
topological defect on one bilayer generates a nontrivial orientational texture
on both monolayers. Therefore, one cannot consider isolated defects on one
monolayer, but rather associated pairs of defects on either monolayer, which we
call bi-defects. Bi-defects generally produce walls, such that the textures of
the two monolayers are identical outside the walls, and different in their
interior. We suggest some experimental conditions in which these structures
could be observed.Comment: RevTeX, 4 pages, 3 figure
Theory of Cylindrical Tubules and Helical Ribbons of Chiral Lipid Membranes
We present a general theory for the equilibrium structure of cylindrical
tubules and helical ribbons of chiral lipid membranes. This theory is based on
a continuum elastic free energy that permits variations in the direction of
molecular tilt and in the curvature of the membrane. The theory shows that the
formation of tubules and helical ribbons is driven by the chirality of the
membrane. Tubules have a first-order transition from a uniform state to a
helically modulated state, with periodic stripes in the tilt direction and
ripples in the curvature. Helical ribbons can be stable structures, or they can
be unstable intermediate states in the formation of tubules.Comment: 43 pages, including 12 postscript figures, uses REVTeX 3.0 and
epsf.st
Radial distribution function of semiflexible polymers
We calculate the distribution function of the end--to--end distance of a
semiflexible polymer with large bending rigidity. This quantity is directly
observable in experiments on single semiflexible polymers (e.g., DNA, actin)
and relevant to their interpretation. It is also an important starting point
for analyzing the behavior of more complex systems such as networks and
solutions of semiflexible polymers. To estimate the validity of the obtained
analytical expressions, we also determine the distribution function numerically
using Monte Carlo simulation and find good quantitative agreement.Comment: RevTeX, 4 pages, 1 figure. Also available at
http://www.cip.physik.tu-muenchen.de/tumphy/d/T34/Mitarbeiter/frey.htm
- …
