13,401 research outputs found

    Multiport VNA Measurements

    Get PDF
    This article presents some of the most recent multiport VNA measurement methodologies used to characterize these highspeed digital networks for signal integrity. There will be a discussion of the trends and measurement challenges of high-speed digital systems, followed by a presentation of the multiport VNA measurement system details, calibration, and measurement techniques, as well as some examples of interconnect device measurements. The intent here is to present some general concepts and trends for multiport VNA measurements as applied to computer system board-level interconnect structures, and not to promote any particular brand or produc

    Quark-Lepton Symmetry In Five Dimensions

    Get PDF
    We construct a complete five dimensional Quark-Lepton symmetric model, with all fields propagating in the bulk. The extra dimension forms an S1/Z2×Z2S^1/Z_2\times Z_2' orbifold with the zero mode fermions corresponding to standard model quarks localised at one fixed point. Zero modes corresponding to left(right)-chiral leptons are localised at (near) the other fixed point. This localisation pattern is motivated by the symmetries of the model. Shifting the right-handed neutrinos and charged leptons slightly from the fixed point provides a new mechanism for understanding the absence of relations of the type me=mum_e=m_u or me=mdm_e=m_d in Quark-Lepton symmetric models. Flavour changing neutral currents resulting from Kaluza Klein gluon exchange, which typically arise in the quark sector of split fermion models, are suppressed due to the localisation of quarks at one point. The separation of quarks and leptons in the compact extra dimension also acts to suppress the proton decay rate. This permits the extra dimension to be much larger than that obtained in a previous construct, with the bound 1/R301/R\gtrsim30 TeV obtained.Comment: 12 pages, references added to match published versio

    Leptonic Flavor and CP Violation

    Get PDF
    We discuss how neutrino oscillation experiments can probe new sources of leptonic flavor and CP violation.Comment: 8 pages, latex, no figures. Invited talk given at KAON 2001, Pisa, Italy, June 12 - 17, 200

    How to project a bipartite network?

    Get PDF
    The one-mode projecting is extensively used to compress the bipartite networks. Since the one-mode projection is always less informative than the bipartite representation, a proper weighting method is required to better retain the original information. In this article, inspired by the network-based resource-allocation dynamics, we raise a weighting method, which can be directly applied in extracting the hidden information of networks, with remarkably better performance than the widely used global ranking method as well as collaborative filtering. This work not only provides a creditable method in compressing bipartite networks, but also highlights a possible way for the better solution of a long-standing challenge in modern information science: How to do personal recommendation?Comment: 7 pages, 4 figure

    CP Violation in \tau ->\nu\pi K_S and D->\pi K_S: The Importance of K_S-K_L Interference

    Full text link
    The BB-factories have measured CP asymmetries in the τπKSν\tau\to\pi K_S\nu and DKSπD\to K_S\pi modes. The KSK_S state is identified by its decay to two pions at a time that is close to the KSK_S lifetime. Within the Standard Model and many of its extensions, the asymmetries in these modes come from CP violation in K0Kˉ0K^0-\bar{K}^0 mixing. We emphasize that the interference between the amplitudes of intermediate KSK_S and KLK_L is as important as the pure KSK_S amplitude. Consequently, the measured asymmetries depend on the times over which the relevant decay rates are integrated and on features of the experiment.Comment: 4 pages, 4 figure

    Assortative mixing in networks

    Full text link
    A network is said to show assortative mixing if the nodes in the network that have many connections tend to be connected to other nodes with many connections. We define a measure of assortative mixing for networks and use it to show that social networks are often assortatively mixed, but that technological and biological networks tend to be disassortative. We propose a model of an assortative network, which we study both analytically and numerically. Within the framework of this model we find that assortative networks tend to percolate more easily than their disassortative counterparts and that they are also more robust to vertex removal.Comment: 5 pages, 1 table, 1 figur

    Optimization of robustness of scale-free network to random and targeted attacks

    Full text link
    The scale-fee networks, having connectivity distribution P(k)kαP(k)\sim k^{-\alpha} (where kk is the site connectivity), is very resilient to random failures but fragile to intentional attack. The purpose of this paper is to find the network design guideline which can make the robustness of the network to both random failures and intentional attack maximum while keeping the average connectivity per node constant. We find that when $=3$ the robustness of the scale-free networks reach its maximum value if the minimal connectivity $m=1$, but when is larger than four, the networks will become more robust to random failures and targeted attacks as the minimal connectivity mm gets larger

    New scalar resonances from sneutrino-Higgs mixing in supersymmetry with small lepton number (R-parity) violation

    Full text link
    We consider new s-channel scalar exchanges in top quark and massive gauge-bosons pair production in e+e- collisions, in supersymmetry with a small lepton number violation. We show that a soft bilinear lepton number violating term in the scalar potential which mixes the Higgs and the slepton fields can give rise to a significant scalar resonance enhancement in e+e- -> ZZ, W+W- and in e+e- -> t t(bar). The sneutrino-Higgs mixed state couples to the incoming light leptons through its sneutrino component and to either the top quark or the massive gauge bosons through its Higgs component. Such a scalar resonance in these specific production channels cannot result from trilinear Yukawa-like R-parity violation alone, and may, therefore, stand as strong evidence for the existence of R-parity violating bilinears in the supersymmetric scalar potential. We use the LEP2 measurements of the WW and ZZ cross-sections to place useful constrains on this scenario, and investigate the expectations for the sensitivity of a future linear collider to these signals. We find that signals of these scalar resonances, in particular in top-pair production, are well within the reach of linear colliders in the small lepton number violation scenario.Comment: 22 pages in revtex, 10 figures embadded in the text using epsfi
    corecore