4,065 research outputs found
Note on Invariants of the Weyl Tensor
Algebraically special gravitational fields are described using algebraic and
differential invariants of the Weyl tensor. A type III invariant is also given
and calculated for Robinson-Trautman spaces.Comment: 3 pages, no figures, corrected expression (12
Twisting type-N vacuum fields with a group
We derive the equations corresponding to twisting type-N vacuum gravitational
fields with one Killing vector and one homothetic Killing vector by using the
same approach as that developed by one of us in order to treat the case with
two non-commuting Killing vectors. We study the case when the homothetic
parameter takes the value -1, which is shown to admit a reduction to a
third-order real ordinary differential equation for this problem, similar to
that previously obtained by one of us when two Killing vectors are present.Comment: LaTeX, 11 pages. To be published in Classical and Quantum Gravit
Asymptotic properties of the C-Metric
The aim of this article is to analyze the asymptotic properties of the
C-metric, using a general method specified in work of Tafel and coworkers, [1],
[2], [3]. By finding an appropriate conformal factor , it allows the
investigation of the asymptotic properties of a given asymptotically flat
spacetime. The news function and Bondi mass aspect are computed, their general
properties are analyzed, as well as the small mass, small acceleration, small
and large Bondi time limits.Comment: 28 pages, 11 figure
Observation of extremely slow hole spin relaxation in self-assembled quantum dots
We report the measurement of extremely slow hole spin relaxation dynamics in
small ensembles of self-assembled InGaAs quantum dots. Individual spin
orientated holes are optically created in the lowest orbital state of each dot
and read out after a defined storage time using spin memory devices. The
resulting luminescence signal exhibits a pronounced polarization memory effect
that vanishes for long storage times. The hole spin relaxation dynamics are
measured as a function of external magnetic field and lattice temperature. We
show that hole spin relaxation can occur over remarkably long timescales in
strongly confined quantum dots (up to ~270 us), as predicted by recent theory.
Our findings are supported by calculations that reproduce both the observed
magnetic field and temperature dependencies. The results suggest that hole spin
relaxation in strongly confined quantum dots is due to spin orbit mediated
phonon scattering between Zeeman levels, in marked contrast to higher
dimensional nanostructures where it is limited by valence band mixing.Comment: Published by Physical Review
Development and application of operational techniques for the inventory and monitoring of resources and uses for the Texas coastal zone
The author has identified the following significant results. Four LANDSAT scenes were analyzed for the Harbor Island area test sites to produce land cover and land use maps using both image interpretation and computer-assisted techniques. When evaluated against aerial photography, the mean accuracy for three scenes was 84% for the image interpretation product and 62% for the computer-assisted classification maps. Analysis of the fourth scene was not completed using the image interpretation technique, because of poor quality, false color composite, but was available from the computer technique. Preliminary results indicate that these LANDSAT products can be applied to a variety of planning and management activities in the Texas coastal zone
An Iterative Approach to Twisting and Diverging, Type N, Vacuum Einstein Equations: A (Third-Order) Resolution of Stephani's `Paradox'
In 1993, a proof was published, within ``Classical and Quantum Gravity,''
that there are no regular solutions to the {\it linearized} version of the
twisting, type-N, vacuum solutions of the Einstein field equations. While this
proof is certainly correct, we show that the conclusions drawn from that fact
were unwarranted, namely that this irregularity caused such solutions not to be
able to truly describe pure gravitational waves. In this article, we resolve
the paradox---since such first-order solutions must always have singular lines
in space for all sufficiently large values of ---by showing that if we
perturbatively iterate the solution up to the third order in small quantities,
there are acceptable regular solutions. That these solutions become flat before
they become non-twisting tells us something interesting concerning the general
behavior of solutions describing gravitational radiation from a bounded source.Comment: 11 pages, a plain TeX file, submitted to ``Classical and Quantum
Gravity'
New first integral for twisting type-N vacuum gravitational fields with two non-commuting Killing vectors
A new first integral for the equations corresponding to twisting type-N
vacuum gravitational fields with two non-commuting Killing vectors is
introduced. A new reduction of the problem to a complex second-order ordinary
differential equation is given. Alternatively, the mentioned first integral can
be used in order to provide a first integral of the second-order complex
equation introduced in a previous treatment of the problem.Comment: 7 pages, LaTeX, uses ioplppt.sty and iopl12.sty; to be published in
Class. Quantum Gra
- …