6,045 research outputs found
For Spacious Skies: Self-Separation with "Autonomous Flight Rules" in US Domestic Airspace
Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global precision navigation, emerging airborne surveillance, and onboard computing enable traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer flight restrictions than are required when using ground-based separation. The AFR concept proposes a practical means in which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control. The paper discusses the context and motivation for implementing self-separation in US domestic airspace. It presents a historical perspective on separation, the proposed way forward in AFR, the rationale behind mixed operations, and the expected benefits of AFR for the airspace user community
Endoscopic Treatment of a Bile Duct Stone Containing a Surgical Staple
We report a case of a pigmented gallstone which formed around a surgical staple in the bile duct. The
stone was removed and retrieved endoscopically. A brief review of bile duct foreign bodies and
gallstones is presented
Autonomous Flight Rules - A Concept for Self-Separation in U.S. Domestic Airspace
Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global navigation, airborne surveillance, and onboard computing enable the functions of traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer restrictions than are required when using ground-based separation. The AFR concept is described in detail and provides practical means by which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control
A View through Faraday's Fog 2: Parsec Scale Rotation Measures in 40 AGN
Results from a survey of the parsec scale Faraday rotation measure properties
for 40 quasars, radio galaxies and BL Lac objects are presented. Core rotation
measures for quasars vary from approximately 500 to several thousand radians
per meter squared. Quasar jets have rotation measures which are typically 500
radians per meter squared or less. The cores and jets of the BL Lac objects
have rotation measures similar to those found in quasar jets. The jets of radio
galaxies exhibit a range of rotation measures from a few hundred radians per
meter squared to almost 10,000 radians per meter squared for the jet of M87.
Radio galaxy cores are generally depolarized, and only one of four radio
galaxies (3C-120) has a detectable rotation measure in the core. Several
potential identities for the foreground Faraday screen are considered and we
believe the most promising candidate for all the AGN types considered is a
screen in close proximity to the jet. This constrains the path length to
approximately 10 parsecs, and magnetic field strengths of approximately 1
microGauss can account for the observed rotation measures. For 27 out of 34
quasars and BL Lacs their optically thick cores have good agreement to a lambda
squared law. This requires the different tau = 1 surfaces to have the same
intrinsic polarization angle independent of frequency and distance from the
black hole.Comment: Accepted to the Astrophysical Journal: 71 pages, 40 figure
Subtraction of Bright Point Sources from Synthesis Images of the Epoch of Reionization
Bright point sources associated with extragalactic AGN and radio galaxies are
an important foreground for low frequency radio experiments aimed at detecting
the redshifted 21cm emission from neutral hydrogen during the epoch of
reionization. The frequency dependence of the synthesized beam implies that the
sidelobes of these sources will move across the field of view as a function of
observing frequency, hence frustrating line-of-sight foreground subtraction
techniques. We describe a method for subtracting these point sources from dirty
maps produced by an instrument such as the MWA. This technique combines matched
filters with an iterative centroiding scheme to locate and characterize point
sources in the presence of a diffuse background. Simulations show that this
technique can improve the dynamic range of EOR maps by 2-3 orders of magnitude.Comment: 11 pages, 8 figures, 1 table, submitted to PAS
An intrinsic characterization of 2+2 warped spacetimes
We give several equivalent conditions that characterize the 2+2 warped
spacetimes: imposing the existence of a Killing-Yano tensor subject to
complementary algebraic restrictions; in terms of the projector (or of the
canonical 2-form ) associated with the 2-planes of the warped product. These
planes are principal planes of the Weyl and/or Ricci tensors and can be
explicitly obtained from them. Therefore, we obtain the necessary and
sufficient (local) conditions for a metric tensor to be a 2+2 warped product.
These conditions exclusively involve explicit concomitants of the Riemann
tensor. We present a similar analysis for the conformally 2+2 product
spacetimes and give an invariant classification of them. The warped products
correspond to two of these invariant classes. The more degenerate class is the
set of product metrics which are also studied from an invariant point of view.Comment: 18 pages; submitted to Class. Quantum Grav
The VLA Low-frequency Sky Survey
The Very Large Array (VLA) Low-frequency Sky Survey (VLSS) has imaged 95% of
the 3*pi sr of sky north of declination = -30 degrees at a frequency of 74 MHz
(4 meter wavelength). The resolution is 80" (FWHM) throughout, and the typical
RMS noise level is ~0.1 Jy/beam. The typical point-source detection limit is
0.7 Jy/beam and so far nearly 70,000 sources have been catalogued. This survey
used the 74 MHz system added to the VLA in 1998. It required new imaging
algorithms to remove the large ionospheric distortions at this very low
frequency throughout the entire ~11.9 degree field of view. This paper
describes the observation and data reduction methods used for the VLSS and
presents the survey images and source catalog. All of the calibrated images and
the source catalog are available online (http://lwa.nrl.navy.mil/VLSS) for use
by the astronomical community.Comment: 53 pages, including 3 tables and 15 figures. Has been accepted for
publication in the Astronomical Journa
Spatial and Temporal Variations in Small-Scale Galactic HI Structure Toward 3C~138
We present three epochs of VLBA observations of Galactic HI absorption toward
the quasar 3C~138 with resolutions of 20 mas (~ 10 AU). This analysis includes
VLBA data from observations in 1999 and 2002 along with a reexamination of 1995
VLBA data. Improved data reduction and imaging techniques have led to an order
of magnitude improvement in sensitivity compared to previous work. With these
new data we confirm the previously detected milliarcsecond scale spatial
variations in the HI opacity at the level of Delta(tau_{max}) =0.50 \pm 0.05.
The typical size scale of the optical depth variations is ~ 50 mas or 25 AU. In
addition, for the first time we see clear evidence for temporal variations in
the HI opacity over the seven year time span of our three epochs of data. We
also attempted to detect the magnetic field strength in the HI gas using the
Zeeman effect. From this analysis we have been able to place a 3 sigma upper
limit on the magnetic field strength per pixel of ~45 muG. We have also been
able to calculate for the first time the plane of sky covering fraction of the
small scale HI gas of ~10%. We also find that the line widths of the
milliarcsecond sizescale HI features are comparable to those determined from
previous single dish measurements toward 3C~138, suggesting that the opacity
variations cannot be due to changes in the HI spin temperature. From these
results we favor a density enhancement interpretation for the small scale HI
structures, although these enhancements appear to be of short duration and are
unlikely to be in equilibrium.Comment: 34 pages, 8 figures. Figures 3 & 4 are in color. Accepted to A
- …