16 research outputs found

    Hysteretic and chaotic dynamics of viscous drops in creeping flows with rotation

    Full text link
    It has been shown in our previous publication (Blawzdziewicz,Cristini,Loewenberg,2003) that high-viscosity drops in two dimensional linear creeping flows with a nonzero vorticity component may have two stable stationary states. One state corresponds to a nearly spherical, compact drop stabilized primarily by rotation, and the other to an elongated drop stabilized primarily by capillary forces. Here we explore consequences of the drop bistability for the dynamics of highly viscous drops. Using both boundary-integral simulations and small-deformation theory we show that a quasi-static change of the flow vorticity gives rise to a hysteretic response of the drop shape, with rapid changes between the compact and elongated solutions at critical values of the vorticity. In flows with sinusoidal temporal variation of the vorticity we find chaotic drop dynamics in response to the periodic forcing. A cascade of period-doubling bifurcations is found to be directly responsible for the transition to chaos. In random flows we obtain a bimodal drop-length distribution. Some analogies with the dynamics of macromolecules and vesicles are pointed out.Comment: 22 pages, 13 figures. submitted to Journal of Fluid Mechanic

    Equilibrium and nonequilibrium thermodynamics of particle-stabilized thin liquid films

    Full text link
    Our recent quasi-two-dimensional thermodynamic description of thin-liquid films stabilized by colloidal particles is generalized to describe nonuniform equilibrium states of films in external potentials and nonequilibrium transport processes produced in the film by gradients of thermodynamic forces. Using a Monte--Carlo simulation method, we have determined equilibrium equations of state for a film stabilized by a suspension of hard spheres. Employing a multipolar-expansion method combined with a flow-reflection technique, we have also evaluated the short-time film-viscosity coefficients and collective particle mobility.Comment: 16 pages, 10 figure

    Swapping trajectories: a new wall-induced cross-streamline particle migration mechanism in a dilute suspension of spheres

    Full text link
    Binary encounters between spherical particles in shear flow are studied for a system bounded by a single planar wall or two parallel planar walls under creeping flow conditions. We show that wall proximity gives rise to a new class of binary trajectories resulting in cross-streamline migration of the particles. The spheres on these new trajectories do not pass each other (as they would in free space) but instead they swap their cross-streamline positions. To determine the significance of the wall-induced particle migration, we have evaluated the hydrodynamic self-diffusion coefficient associated with a sequence of uncorrelated particle displacements due to binary particle encounters. The results of our calculations quantitatively agree with the experimental value obtained by \cite{Zarraga-Leighton:2002} for the self-diffusivity in a dilute suspension of spheres undergoing shear flow in a Couette device. We thus show that the wall-induced cross-streamline particle migration is the source of the anomalously large self-diffusivity revealed by their experiments.Comment: submited to JF

    Many-particle hydrodynamic interactions in parallel-wall geometry: Cartesian-representation method

    Full text link
    This paper describes the results of our theoretical and numerical studies of hydrodynamic interactions in a suspension of spherical particles confined between two parallel planar walls, under creeping-flow conditions. We propose a novel algorithm for accurate evaluation of the many-particle friction matrix in this system--no such algorithm has been available so far. Our approach involves expanding the fluid velocity field into spherical and Cartesian fundamental sets of Stokes flows. The interaction of the fluid with the particles is described using the spherical basis fields; the flow scattered with the walls is expressed in terms of the Cartesian fundamental solutions. At the core of our method are transformation relations between the spherical and Cartesian basis sets. These transformations allow us to describe the flow field in a system that involves both the walls and particles. We used our accurate numerical results to test the single-wall superposition approximation for the hydrodynamic friction matrix. The approximation yields fair results for quantities dominated by single particle contributions, but it fails to describe collective phenomena, such as a large transverse resistance coefficient for linear arrays of spheres

    Lubrication approximation for micro-particles moving along parallel walls

    Full text link
    Lubrication expressions for the friction coefficients of a spherical particle moving in a fluid between and along two parallel solid walls are explicitly evaluated in the low-Reynolds-number regime. They are used to determine lubrication expression for the particle free motion under an ambient Poiseuille flow. The range of validity and the accuracy of the lubrication approximation is determined by comparing with the corresponding results of the accurate multipole procedure. The results are applicable for thin, wide and long microchannels, or quasi-two-dimensional systems.Comment: 4 pages, 5 figure

    An analysis of the far-field response to external forcing of a suspension in Stokes flow in a parallel-wall channel

    Full text link
    The leading-order far-field scattered flow produced by a particle in a parallel-wall channel under creeping flow conditions has a form of the parabolic velocity field driven by a 2D dipolar pressure distribution. We show that in a system of hydrodynamically interacting particles, the pressure dipoles contribute to the macroscopic suspension flow in a similar way as the induced electric dipoles contribute to the electrostatic displacement field. Using this result we derive macroscopic equations governing suspension transport under the action of a lateral force, a lateral torque or a macroscopic pressure gradient in the channel. The matrix of linear transport coefficients in the constitutive relations linking the external forcing to the particle and fluid fluxes satisfies the Onsager reciprocal relation. The transport coefficients are evaluated for square and hexagonal periodic arrays of fixed and freely suspended particles, and a simple approximation in a Clausius-Mossotti form is proposed for the channel permeability coefficient. We also find explicit expressions for evaluating the periodic Green's functions for Stokes flow between two parallel walls.Comment: 23 pages, 12 figure

    Hydrodynamic interactions of spherical particles in Poiseuille flow between two parallel walls

    Full text link
    We study hydrodynamic interactions of spherical particles in incident Poiseuille flow in a channel with infinite planar walls. The particles are suspended in a Newtonian fluid, and creeping-flow conditions are assumed. Numerical results, obtained using our highly accurate Cartesian-representation algorithm [Physica A xxx, {\bf xx}, 2005], are presented for a single sphere, two spheres, and arrays of many spheres. We consider the motion of freely suspended particles as well as the forces and torques acting on particles adsorbed at a wall. We find that the pair hydrodynamic interactions in this wall-bounded system have a complex dependence on the lateral interparticle distance due to the combined effects of the dissipation in the gap between the particle surfaces and the backflow associated with the presence of the walls. For immobile particle pairs we have examined the crossover between several far-field asymptotic regimes corresponding to different relations between the particle separation and the distances of the particles from the walls. We have also shown that the cumulative effect of the far-field flow substantially influences the force distribution in arrays of immobile spheres. Therefore, the far-field contributions must be included in any reliable algorithm for evaluating many-particle hydrodynamic interactions in the parallel-wall geometry.Comment: submitted to Physics of Fluid

    Far-field approximation for hydrodynamic interactions in parallel-wall geometry

    Full text link
    A complete analysis is presented for the far-field creeping flow produced by a multipolar force distribution in a fluid confined between two parallel planar walls. We show that at distances larger than several wall separations the flow field assumes the Hele-Shaw form, i.e., it is parallel to the walls and varies quadratically in the transverse direction. The associated pressure field is a two-dimensional harmonic function that is characterized by the same multipolar number m as the original force multipole. Using these results we derive asymptotic expressions for the Green's matrix that represents Stokes flow in the wall-bounded fluid in terms of a multipolar spherical basis. This Green's matrix plays a central role in our recently proposed algorithm [Physica A xx, {\bf xxx} (2005)] for evaluating many-body hydrodynamic interactions in a suspension of spherical particles in the parallel-wall geometry. Implementation of our asymptotic expressions in this algorithm increases its efficiency substantially because the numerically expensive evaluation of the exact matrix elements is needed only for the neighboring particles. Our asymptotic analysis will also be useful in developing hydrodynamic algorithms for wall-bounded periodic systems and implementing acceleration methods by using corresponding results for the two-dimensional scalar potential.Comment: 28 pages 5 figure
    corecore