6 research outputs found

    Commensurate and Non-Commensurate Fractional-Order Discrete Models of an Electric Individual-Wheel Drive on an Autonomous Platform

    Get PDF
    This paper presents integer and linear time-invariant fractional order (FO) models of a closed-loop electric individual-wheel drive implemented on an autonomous platform. Two discrete-time FO models are tested: non-commensurate and commensurate. A classical model described by the second-order linear difference equation is used as the reference. According to the sum of the squared error criterion (SSE), we compare a two-parameter integer order model with four-parameter non-commensurate and three-parameter commensurate FO descriptions. The computer simulation results are compared with the measured velocity of a real autonomous platform powered by a closed-loop electric individual-wheel drivehe research was supported by the Polish National Science Center in 2013-2015 as a research project (DEC-2012/05/B/ST 6/03647).info:eu-repo/semantics/publishedVersio

    Fractional-order discrete model of an independent wheel electrical drive of the autonomous platform

    No full text
    In the paper the linear time-invariant fractional-order models of the separated wheel closed-loop electrical drive of the autonomous platform are considered. As a reference model one considers the classical model described by the second-order linear difference equation. Two discrete-time fractional-order models are considered: non-commensurate and commensurate. According to the sum of the squared error criterion (SSE) one compares two-parameter integer-order model with the four-parameter non-commensurate and three-parameter commensurate fractional-order ones. Three mathematical models are built and simulated. The computer simulation results are compared with measured velocity of the real autonomous platform separate wheel closed-loop electrical drive

    The Sun and heliosphere explorer - the Interhelioprobe mission

    No full text
    International audienceThe Interhelioprobe mission aims to investigate the inner heliosphere and the Sun from close distances (up to 0.3 AU) and from out of the ecliptic plane (up to 30°). In this paper we present the relevance of the mission and its main scientific objectives, describe the scientific payload, ballistic scenario and orbits of the spacecraft. Possibilities of scientific cooperation with other solar and heliospheric space missions are also mentioned

    The Sun and heliosphere explorer – the Interhelioprobe mission

    No full text
    corecore