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Abstract: This paper presents integer and linear time-invariant fractional order (FO) models
of a closed-loop electric individual-wheel drive implemented on an autonomous platform.
Two discrete-time FO models are tested: non-commensurate and commensurate. A classical model
described by the second-order linear difference equation is used as the reference. According
to the sum of the squared error criterion (SSE), we compare a two-parameter integer order
model with four-parameter non-commensurate and three-parameter commensurate FO descriptions.
The computer simulation results are compared with the measured velocity of a real autonomous
platform powered by a closed-loop electric individual-wheel drive.

Keywords: fractional-order backward-difference; difference equation; identification

1. Introduction

Analysis of real dynamical systems based on the mathematical tools of fractional calculus [1–7]
enables the construction of superior mathematical models [8–12], in the sense of providing a better
match between the mathematical description and the measured data. Fractional modeling and control
of an industrial selective compliant assembly robot arm was described in [13]. A fractional order
PID controller was used for two-link robot control in [14]. A fractional order model of an inverted
pendulum system based on simulated and experimental data was presented in [15]. Indeed, allowing
any real orders in the differential or difference equations provides a good data fit, due to the assumed
optimization criterion. On the other hand, there is an increase in the number of parameters which
must be estimated. In this paper, non-commensurate and commensurate fractional order (FO) models
are compared in terms of their effectiveness. Commensurate models are characterized by a smaller
number of parameters. This is due to the parameter set required in the non-commensurate system,
νp, νp−1, · · · , ν1 ∈ R, as opposed to that in the commensurate system, pν, (p− 1)ν, · · · , ν, ν ∈ R, p ∈ N.
In each case, the number of first order differential equation (FODE) coefficients is the same. This paper
provides a short introduction to the non-commensurate and commensurate systems described by
linear FO difference equations and their state-space forms [16]. We then describe the closed-loop
DC individual-wheel drive implemented in an autonomous platform. We propose two simple linear
models based on the FODE. The simulation results are compared with the measured data. Similar
results were obtained using the two considered models. However, commensurate models have only one
multiple order. The paper is organized as follows. In Section 2, fundamental information concerning
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the variable, fractional order backward difference equation is introduced. Section 3 describes the
closed-loop individual-wheel DC drive motor. In Section 4, the results provided by the proposed
models are compared with the measured velocity of an electrical set-up, according to sum of the
squared error criterion (SSE). The results are discussed in Section 5.

2. Non-Commensurate and Commensurate Difference Equation

Mathematical models of dynamical systems can be expressed by means of the following
differential equations:

F
[

dpy(t)
dtp ,

dp−1y(t)
dtp−1 , · · · ,

y(t)
dt

, y(t), (1)

dqu(t)
dtq ,

dq−1u(t)
dtq−1 , · · · ,

u(t)
dt

, u(t), t
]
= 0,

where y(t) and u(t) denote the output and the input signals, respectively, and function F is non-linear
in general. One can also include FO derivatives in the models:

F
[

GL
t0

D
νp
t y(t),GL

t0
D

νp−1
t y(t), · · · ,GL

t0
Dν1

t y(t), y(t), (2)

GL
t0

D
µq
t u(t), · · · ,GL

t0
Dµ1

t u(t), u(t), t
]
= 0,

where GL
t0

D
νp
t y(t) denotes the Grünwald-Letnikov FO derivative. Let all orders be arranged in a series

such that νp > νp−1 > · · · > ν1 > 0 and µq > µq−1 > · · · > µ1 > 0.
Assume that all orders can be expressed in the form

νi =
ei
di

for i = 1, 2, · · · , p, and ei, di ∈ Z+ (3)

µj =
gj

f j
for j = 1, 2, · · · , q, and gj, f j ∈ Z+. (4)

One can substitute the Grünwald-Letnikov fractional left derivative for the Grünwald-Letnikov
fractional order backward difference (GL-FOBD). Let us define the finite sum for ν ∈ R+

GL
k0

∆(ν)
k f (k) =

k

∑
i=k0

a(ν)(i− k0) f (k + k0 − i) (5)

=
k−k0

∑
i=0

a(ν)(i) f (k− i),

where

a(ν)(k) =


0 for k < 0
1 for k = 0

(−1)k ν(ν−1)···(ν−k+1)
k! for k = 1, 2, 3, · · ·

(6)

The GL-FOBD divided by the sampling time h (which should be relatively small in real-world
applications) in Equation (2) approximates the derivatives, yielding:

GL
t0

D(νi)
t y(t) ≈

GL
k0h∆(νi)

kh y(kh)

hνi
, (7)

GL
t0

D
(µj)
t u(t) ≈

GL
k0h∆

(µj)

kh u(kh)

hµj
.
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Hence, for i = 1, 2, · · · , p, j = 1, 2, · · · , q, from (2) one obtains the FODE

F
[

GL
k0h∆

(νp)

kh y(kh), · · · ,GL
k0h ∆(ν1)

kh y(kh), y(kh),

GL
k0h∆

(µq)

kh u(kh), · · · ,GL
k0h ∆(µ1)

kh u(kh), u(kh), kh
]
= 0. (8)

Let d be the least common denominator of fractions (3) and (4). Then, the FO takes the form

νi =
ni
d

for i = 1, 2, · · · , p, and ni, d ∈ Z+ (9)

µj =
mj

d
for j = 1, 2, · · · , q, and mj, d ∈ Z+ (10)

where
ν =

1
d

. (11)

If we introduce the notation

GL
k0h∆

( 1
d )

kh y(kh) =GL
k0h ∆(ν)

kh y(kh), (12)

GL
k0h∆

( 1
d )

kh u(kh) =GL
k0h ∆(ν)

kh u(kh), (13)

then the appropriate FOBD is as follows

GL
k0h∆(νi)

kh y(kh) =GL
k0h ∆(niν)

kh y(kh) (14)

=

GL
k0h∆(ν)

kh
GL
k0h∆(ν)

kh · · ·
GL
k0h∆(ν)

kh︸ ︷︷ ︸
ni

 y(kh).

Under the above transformations, the FODE (8) takes the form

F
[

GL
k0h∆(νp)

kh y(kh), · · · ,GL
k0h ∆(ν)

kh y(kh), y(kh),

GL
k0h∆(νq)

kh u(kh), · · · ,GL
k0h ∆(ν)

kh u(kh), u(kh), kh
]
= 0. (15)

2.1. Non-Commensurate and Commensurate Linear Time-Invariant FODE

Linear time-invariant FOBDs constitute a special but very important class of FOBD. With a
non-linear FODE, one can apply the linearization procedure around steady-state conditions, under
the assumption of a relatively small change in the input signal. This is the first approach in system
modeling. The linear time invariant non-commensurate FODE takes the form

p

∑
i=0

ai
GL
k0

∆(νi)
k y(k) =

q

∑
j=0

bj
GL
k0

∆
(νj)

k u(k) = v(k), (16)

where the FO are ordered in the same way as in (8). The linear time-invariant commensurate FODE is
as follows:

p

∑
i=0

ai
GL
k0

∆(iν)
k y(k) =

q

∑
j=0

bj
GL
k0

∆(jν)
k u(k) = v(k), (17)

where ai, bj are constant coefficients and ap = 1, p ≥ q, and u(k) is a known input signal. For d = 1
in (11), i.e., for ν = 1, the considered FODE represents the classical integer-order difference
equations (IODEs).
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Every rational order non-commensurate system can be approximated by a commensurate system.
The transformation procedure is described in [16].

2.2. State-Space Equations of the Non-Commensurate and Commensurate Systems

The FOBD has a concatenation property

GL
k0

∆(ν)
k

[
GL
k0

∆(µ)
k y(k)

]
=GL

k0
∆(ν+µ)

k y(k), (18)

for ν, µ ≥ 0. Therefore, every FOBD in Equation (16) can be expressed in the form

GL
k0

∆(νi)
k y(k) =

i

∏
k=0

GL
k0

∆(νi−νi−1)
k y(k), (19)

when ν0 = 0. Note that all orders verify the conditions νi − νi−1 > 0 for i = p, p− 1, · · · , 2, 1. Hence,
the FODE takes the form

p

∑
i=0

ai

i

∏
k=0

GL
k0

∆(νi−νi−1)
k y(k) = v(k). (20)

One may now define new variables, referred to henceforth as state-variables

y(k) = x1(k)
GL
k0

∆(ν1)
k y(k) =GL

k0
∆(ν1)

k x1(k) = x2(k)

GL
k0

∆(ν2−ν1)
k

[
GL
k0

∆(ν1)
k y(k)

]
=GL

k0
∆(ν2−ν1)

k x2(k) = x3(k)

...
GL
k0

∆
(νp−1−νp−2)

k xp−1(k) = xp(k) (21)

The introduction of the above set of state variables into (20) gives the equation

GL
k0

∆
(νp−νp−1)

k xp(k) +
p−1

∑
i=1

aixi(k) = v(k). (22)

Equations (21) and (22) can be expressed in matrix-vector form

GL
k0

∆(ν)
k x(k) = Ax(k) + bv(k), (23)

y(k) = cx(k) + bv(k), (24)

where

GL
k0

∆(ν)
k x(k) =



GL
k0

∆(ν1)
k x1(k)

GL
k0

∆(ν2−ν1)
k x2(k)

GL
k0

∆(ν3−ν2)
k x3(k)

...
GL
k0

∆
(νp−1−νp−2)

k xp−1(k)
GL
k0

∆
(νp−νp−1)

k xp(k)


, (25)
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ν =



ν1

ν2 − ν1

ν3 − ν2
...

νp−1 − νp−2

νp − νp−1


, x(k) =



x1(k)
x2(k)
x3(k)

...
xp−1(k)

xp(k)


(26)

A =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...
0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −ap−2 −ap−1


, b =



0
0
0
...
0
1


, (27)

c =
[
0 0 0 · · · 0 1,

]
d = [1] . (28)

In the case of the commensurate system, we have νi = iν for i = 1, 2, · · · , p. Hence, νi − νi−1 = ν

and the left-hand side vector (25) simplify to

GL
k0

∆( ˚ )
k x(k) =



GL
k0

∆(ν)
k x1(k)

GL
k0

∆(ν)
k x2(k)

GL
k0

∆(ν)
k x3(k)

...
GL
k0

∆(ν)
k xp−1(k)

GL
k0

∆(ν)
k xp(k)


=GL

k0
∆(ν)

k



x1(k)
x2(k)
x3(k)

...
xp−1(k)

xp(k)


(29)

3. Closed-Loop DC Individual-Wheel Drive

The block diagram [17] of the closed-loop electrical drive [18,19] is shown in Figure 1, where
R(z) and Ω(z) are the discrete-time reference and output (angular velocity) signals, and KP and
KI denote the PI controller parameters. The acronyms ZOH and IS stand for zero-order hold and
the ideal sampler, respectively. The PWM inverter is represented by a first-order inertial element
with parameters Ka and Ta. The DC motor is characterized by the electrical time constant Tt and
by the parameter cΦ, which denotes the back-EMF and torque constant of the motor. The symbols
Jo and Ks stand for the motor plus load inertia and the sensor coefficient, respectively. The wheel
is suspended in the air, which means that the external disturbance moment Md(s) = 0. Under the
considered conditions of the experiment, the internal friction should also be taken into account [20].
The continuous part of the closed-loop system is described by the transfer function

Go(s) =
Ka(1−e−sh)

cΦ
s (TtTms2 + Tm + 1) (Tas + 1)

, (30)

where h is the sampling time and Tm is the mechanical time constant. Its discrete counterpart may be
expressed as

Go(z−1) =
Kd
(
T‘

1 − z−1) (T‘
2 − z−1)

(T1 − z−1) (T2 − z−1) (T3 − z−1)
, (31)
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where Ti and T‘
j for i = 1, 2, 3 and j = 1, 2, are time constants related to the closed-loop system

parameters mentioned above. The discrete closed-loop system is shown in Figure 2. From this block
diagram, one obtains the discrete transfer function in the form

Gc(z−1) =
B0 + B1z−1 + B2z−2 + B3z−3

1 + A1z−1 + A2z−2 + A3z−3 + A4z−4 . (32)

Figure 1. Block diagram of the closed-loop electric individual-wheel drive.

Figure 2. Block diagram of the discrete closed-loop electric individual-wheel drive.

Related to the above discrete transfer function, there is the commensurate IODE (17) with
p = 4, q = 3 and coefficients ai, b0, bi, i = 0, · · · , 3, which are functions of Ai, Bj, i = 1, · · · , 4, j =

0, · · · , 3. Hence, the model resulting from the block diagram in Figure 2 contains eight parameters.
Figure 3 and 4 present 3D drawings of the considered dynamical system. Figure 5 shows the

experimental set-up. Note that in the identification procedure the main external disturbance is assumed
to be zero d(k) = 0.

Figure 3. Model 3D of the autonomous platform wheel.
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Figure 4. Model of the autonomous wheel platform—2D view.

(a) Wheel (b) Wheel control system
Figure 5. Photographs of the autonomous wheel platform.

3.1. Transient Characteristics of Measured DC Motor Wheel Drive

The discrete step response presented in Figure 6 suggests the need for second-order-damped
oscillation models. Evidently, in the “black box” measured data there are hidden non-linear frictions
and external disturbance moments which the non-commensurate and commensurate FODE models
should describe.

3.2. Classical Two-Parameter Linear Integer-Order Difference Equation Model of the Wheel-Drive

As mentioned previously, the classical oscillation model takes (17) with p = 2, q = 0, ν2 = 2 and
ν1 = 1. This assumption means that the model is described by the IODE in the form

GL
k0

∆(2)
k y1,2(k) + a1

GL
k0

∆(1)
k y1,2(k) + a0y1,2(k) = a0r(k). (33)

Without lack of generality one can assume b0 = a0. Hence, we obtain two parameters of the
model, a1 and a0. The integer orders are two and one. The related state-space form is as follows:
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GL
k0

∆(1)
k

[
x1(k)
x2(k)

]
=

[
0 1
−a0 −a1

]
+

[
0
1

]
r(k),

y1,2(k) =
[
1 0

] [x1(k)
x2(k)

]
+ [a0] r(k). (34)

Figure 6. Measured angular velocity of wheel-drive system under step excitation.

3.3. Non-Commensurate Three-Parameter Linear Fractional-Order Difference Equation Model of the
Wheel-Drive

As a special case of (16), one assumes a three-parameter model

GL
k0

∆(ν2)
k yν1,ν2(k) + a1

GL
k0

∆(ν1)
k yν1,ν2(k)

+a0yν1,ν2(k) = a0r(k). (35)

Related state-space equations are

[
GL
k0

∆(ν1)
k x1(k)

GL
k0

∆(ν2−ν1)
k x2(k)

]
=

[
0 1
−a0 −a1

]
+

[
0
1

]
r(k),

yν1,ν2(k) =
[
1 0

] [x1(k)
x2(k)

]
+ [a0] r(k) (36)

with four unknown parameters, a1, a0, ν2 and ν1.

3.4. Commensurate Linear Fractional-Order State-Space Model of the Wheel-Drive

The FODE has three parameters, a1, a0 and ν ∈ R+.

GL
k0

∆(2ν)
k yν,2ν(k) + a1

GL
k0

∆(ν)
k yν,2ν(k) + a0yν,2ν(k)

= a0r(k), (37)
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GL
k0

∆(ν)
k

[
x1(k)
x2(k)

]
=

[
0 1
−a0 −a1

]
+

[
0
1

]
r(k),

yν,2ν(k) =
[
1 0

] [x1(k)
x2(k)

]
+ [a0] r(k). (38)

4. Comparison of Models

The optimal choice of parameters related to the three linear structures is described by formulas (30),
(32) and (34), which are based on the minimization of the performance index sum of the squared errors
(SSE). Let us denote the measured output signal as ym(k). If one defines three error functions

e1,2(k) = ym(k)− y1,2(k), (39)

eν1,2ν1(k) = ym(k)− yν1,2ν1(k), (40)

eν1,ν2(k) = ym(k)− yν1,ν2(k), (41)

then the criteria are the functions

SSE(a0, a1) =
kmax

∑
k=0

e2
1,2(k), (42)

SSE(a0, a1, ν1, ν2) =
kmax

∑
k=0

e2
ν1,ν2

(k), (43)

SSE(a0, a1, ν1) =
kmax

∑
k=0

e2
ν1,2ν1

(k). (44)

Numerical tests found minimum values for the coefficients and FO, which are listed in Table 1.

Table 1. Comparison of identification results.

Name Model a1 a0 ν1 ν2 SSE

IODE (33) 0.1447 0.01447 1 2 0.0360
Non-commensurate FODE (35) 0.145 0.01460 0.993 1.931 0.0175

Commensurate FODE (37) 0.144 0.01456 0.983 1.966 0.0249

The plots of the measured output signal ym(kh) and the simulated responses y2,1, yν1,ν2 and yν1,2ν1

are presented in Figures 6 and 7, respectively. Figure 8 shows an enlarged fragment of Figure 7.
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Figure 7. Plots of the responses: measured ym(k), simulated integer-order (IO) response y1,2(k) and
fractional order (FO) models—non-commensurate yν1,ν2 (k) and commensurate yν,2ν(k).

Figure 8. Enlarged fragment of Figure 7.

Figure 9 compares the errors resulting from the formulas (39)–(41). The values of the appropriate
SSE are shown in Figure 10.
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Figure 9. Plots of the errors e1,2(k) (black), eν1,ν2 (k) (red) and eν,2ν (blue).

Figure 10. Minimum values of the sum of the squared error (SSE) criteria: SSE(a0, a1), SSE(a0, a1, ν1, ν2)

and SSE(a0, a1, ν, 2ν).

5. Conclusions

Numerical analysis shows that the application of FO models leads to an over 50% improvement
in the SSE performance index compared to IO modeling. The commensurate model is inferior to the
non-commensurate model, according to the relation

min[SSE(a0, a1)] ≥ min[SSE(a0, a1, ν1)]

≥ min[SSE(a0, a1, ν1, ν2)]. (45)
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The proposed lowering of the total order is of particular importance in closed-loop systems with
multiple inputs and multiple outputs with the same sub-plants. A block diagram of two cooperating
wheels is shown in Figure 11. In the autonomous 6-wheel platform there are three such blocks.

In summary, the proposed fractional order approach leads to a good fit between the experimental
data and the model formulation, proving that fractional calculus highlights aspects of dynamics that
are to some extent overlooked from the standard integer order perspective.

Figure 11. Block diagram of two cooperating wheels.
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