109 research outputs found

    Assessment of the kidneys: magnetic resonance angiography, perfusion and diffusion

    Get PDF
    Renal magnetic resonance (MR) imaging has undergone major improvements in the past several years. This review focuses on the technical basics and clinical applications of MR angiography (MRA) with the goal of enabling readers to acquire high-resolution, high quality renal artery MRA. The current role of contrast agents and their safe use in patients with renal impairment is discussed. In addition, an overview of promising techniques on the horizon for renal MR is provided. The clinical value and specific applications of renal MR are critically discussed

    Hypofractionated image-guided breath-hold SABR (Stereotactic Ablative Body Radiotherapy) of liver metastases - clinical results

    Get PDF
    Purpose: Stereotactic Ablative Body Radiotherapy (SABR) is a non-invasive therapy option for inoperable liver oligometastases. Outcome and toxicity were retrospectively evaluated in a single-institution patient cohort who had undergone ultrasound-guided breath-hold SABR. Patients and methods: 19 patients with liver metastases of various primary tumors consecutively treated with SABR (image-guidance with stereotactic ultrasound in combination with computer-controlled breath-hold) were analysed regarding overall-survival (OS), progression-free-survival (PFS), progression pattern, local control (LC), acute and late toxicity. Results: PTV (planning target volume)-size was 108 +/- 109cm(3) (median 67.4 cm(3)). BED2 (Biologically effective dose in 2 Gy fraction) was 83.3 +/- 26.2 Gy (median 78 Gy). Median follow-up and median OS were 12 months. Actuarial 2-year-OS-rate was 31%. Median PFS was 4 months, actuarial 1-year-PFS-rate was 20%. Site of first progression was predominantly distant. Regression of irradiated lesions was observed in 84% (median time to detection of regression was 2 months). Actuarial 6-month-LC-rate was 92%, 1- and 2-years-LC-rate 57%, respectively. BED2 influenced LC. When a cut-off of BED2 = 78 Gy was used, the higher BED2 values resulted in improved local control with a statistical trend to significance (p = 0.0999). Larger PTV-sizes, inversely correlated with applied dose, resulted in lower local control, also with a trend to significance (p-value = 0.08) when a volume cut-off of 67 cm(3) was used. No local relapse was observed at PTV-sizes < 67 cm(3) and BED2 > 78 Gy. No acute clinical toxicity > degrees 2 was observed. Late toxicity was also <= degrees 2 with the exception of one gastrointestinal bleeding-episode 1 year post-SABR. A statistically significant elevation in the acute phase was observed for alkaline-phosphatase; in the chronic phase for alkaline-phosphatase, bilirubine, cholinesterase and C-reactive protein. Conclusions: A trend to statistically significant correlation of local progression was observed for BED2 and PTV-size. Dose-levels BED2 > 78 Gy cannot be reached in large lesions constituting a significant fraction of this series. Image-guided SABR (igSABR) is therefore an effective non-invasive treatment modality with low toxicity in patients with small inoperable liver metastases

    Comparison of Dynamic and Liver-Specific Gadoxetic Acid Contrast-Enhanced MRI versus Apparent Diffusion Coefficients

    Get PDF
    Hepatic lesions often present diagnostic connundrums with conventional MR techniques. Hepatobiliary phase contrast-enhanced imaging with gadoxetic acid can aid in the characterization of such lesions. However, quantitative measures describing late-phase enhancement must be assessed relative to their accuracy of hepatic lesion classification.To compare quantitative parameters in gadoxetic acid contrast-enhanced dynamic and hepatobiliary phase imaging versus apparent diffusion coefficients in hepatic lesion characterization.57 patients with focal hepatic lesions on gadoxetic acid MR were included. Lesion enhancement at standard post-contrast time points and in the hepatobiliary phase (HB; 15 and 25 minutes post-contrast) was assessed via calculation of contrast (CR) and enhancement ratios (ER). Apparent diffusion coefficient (ADC) values were also obtained. Values for these parameters were compared among lesions and ROC analyses performed.HB enhancement was greatest with FNH and adenomas. HB ER parameters but not HB CR could distinguish HCC from benign entities (0.9 ER ROC AUC versus 0.5 CR ROC AUC). There was no statistically significant difference found between the 15 and 25 minutes HB time points in detection of any lesion (p>0.4). ADC values were statistically significantly higher with hemangiomas (p<0.05) without greater accuracy in lesion detection relative to HB phase parameters.Hepatobiliary phase gadoxetic acid contrast-enhanced MR characterizes focal hepatic lesions more accurately than ADC and conventional dynamic post-contrast time point enhancement parameters. ER values are generally superior to CR. No discernible benefit of 25 minute versus 15 minute delayed imaging is demonstrated

    Micro-Raman Mapping of 3C-SiC Thin Films Grown by Solid–Gas Phase Epitaxy on Si (111)

    Get PDF
    A series of 3C-SiC films have been grown by a novel method of solid–gas phase epitaxy and studied by Raman scattering and scanning electron microscopy (SEM). It is shown that during the epitaxial growth in an atmosphere of CO, 3C-SiC films of high crystalline quality, with a thickness of 20 nm up to few hundreds nanometers can be formed on a (111) Si wafer, with a simultaneous growth of voids in the silicon substrate under the SiC film. The presence of these voids has been confirmed by SEM and micro-Raman line-mapping experiments. A significant enhancement of the Raman signal was observed in SiC films grown above the voids, and the mechanisms responsible for this enhancement are discussed

    MRI of the lung (2/3). Why … when … how?

    Get PDF
    Background Among the modalities for lung imaging, proton magnetic resonance imaging (MRI) has been the latest to be introduced into clinical practice. Its value to replace X-ray and computed tomography (CT) when radiation exposure or iodinated contrast material is contra-indicated is well acknowledged: i.e. for paediatric patients and pregnant women or for scientific use. One of the reasons why MRI of the lung is still rarely used, except in a few centres, is the lack of consistent protocols customised to clinical needs. Methods This article makes non-vendor-specific protocol suggestions for general use with state-of-the-art MRI scanners, based on the available literature and a consensus discussion within a panel of experts experienced in lung MRI. Results Various sequences have been successfully tested within scientific or clinical environments. MRI of the lung with appropriate combinations of these sequences comprises morphological and functional imaging aspects in a single examination. It serves in difficult clinical problems encountered in daily routine, such as assessment of the mediastinum and chest wall, and even might challenge molecular imaging techniques in the near future. Conclusion This article helps new users to implement appropriate protocols on their own MRI platforms. Main Messages • MRI of the lung can be readily performed on state-of-the-art 1.5-T MRI scanners. • Protocol suggestions based on the available literature facilitate its use for routine • MRI offers solutions for complicated thoracic masses with atelectasis and chest wall invasion. • MRI is an option for paediatrics and science when CT is contra-indicate

    FED-A, an advanced performance FED based on low safety factor and current drive

    Get PDF
    This document is one of four describing studies performed in FY 1982 within the context of the Fusion Engineering Device (FED) Program for the Office of Fusion Energy, U.S. Department of Energy. The documents are: 1. FED Baseline Engineering Studies (ORNL/FEDC-82/2), 2. FED-A, An Advanced Performance FED Based on Low Safety Factor and Current Drive (this document), 3. FED-R, A Fusion Device Utilizing Resistive Magnets (ORNL/FEDC-82/1), and 4. Technology Demonstration Facility TDF. These studies extend the FED Baseline concept of FY 1981 and develop innovative and alternative concepts for the FED. The FED-A study project was carried out as part of the Innovative and Alternative Tokamak FED studies, under the direction of P. H. Rutherford, which were part of the national FED program during FY 1982. The studies were performed jointly by senior scientists in the magnetic fusion community and the staff of the Fusion Engineering Design Center (FEDC). Y-K. M. Peng of the FEDC, on assignment from Oak Ridge National Laboratory, served as the design manager
    corecore