665 research outputs found

    Does feedback help or hinder star formation? The effect of photoionisation on star formation in Giant Molecular Clouds

    Get PDF
    We investigated the effect of photoionising feedback inside turbulent star-forming clouds, comparing the resultant star formation in both idealised profiles and more realistic cloud structures drawn from a global galaxy simulation. We performed a series of numerical simulations which compared the effect of star formation alone, photoionisation and photoionisation plus supernovae feedback. In the idealised cloud, photoionisation suppresses gas fragmentation at early times, resulting in the formation of more massive stars and an increase in the star formation efficiency. At later times, the dispersal of the dense gas causes the radiative feedback effect to switch from positive to negative as the star formation efficiency drops. In the cloud extracted from the global simulation, the initial cloud is heavily fragmented prior to the stellar feedback beginning and is largely structurally unaffected by the late injection of radiation energy. The result is a suppression of the star formation. We conclude that the efficiency of feedback is heavily dependent on the gas structure, with negative feedback dominating when the density is high.Comment: Accepted to MNRA

    Environmental dependence of star formation induced by cloud collisions in a barred galaxy

    Get PDF
    Cloud collision have been proposed as a way to link the small-scale star formation process with the observed global relation between the surface star formation rate and gas surface density. We suggest that this model can be improved further by allowing the productivity of such collisions to depend on the relative velocity of the two clouds. Our adjustment implements a simple step function that results in the most successful collisions being at the observed velocities for triggered star formation. By applying this to a high resolution simulation of a barred galaxy, we successfully reproduce the observational result that the star formation efficiency (SFE) in the bar is lower than that in the spiral arms. This is not possible when we use an efficiency dependent on the internal turbulence properties of the clouds. Our results suggest that high velocity collisions driven by the gravitational pull of the clouds are responsible for the low bar SFE.Comment: 6 pages, 4 figures. Accepted for publication in MNRAS Letter

    Do Giant Molecular Clouds Care About the Galactic Structure?

    Get PDF
    We investigate the impact of galactic environment on the properties of simulated giant molecular clouds formed in a M83-type barred spiral galaxy. Our simulation uses a rotating stellar potential to create the grand design features and resolves down to 1.5 pc. From the comparison of clouds found in the bar, spiral and disc regions, we find that the typical GMC is environment independent, with a mass of 5e+5 Msun and radius 11 pc. However, the fraction of clouds in the property distribution tails varies between regions, with larger, more massive clouds with a higher velocity dispersion being found in greatest proportions in the bar, spiral and then disc. The bar clouds also show a bimodality that is not reflected in the spiral and disc clouds except in the surface density, where all three regions show two distinct peaks. We identify these features as being due to the relative proportion of three cloud types, classified via the mass-radius scaling relation, which we label A, B and C. Type A clouds have the typical values listed above and form the largest fraction in each region. Type B clouds are massive giant molecular associations while Type C clouds are unbound, transient clouds that form in dense filaments and tidal tails. The fraction of each clouds type depends on the cloud-cloud interactions, which cause mergers to build up the GMA Type Bs and tidal features in which the Type C clouds are formed. The number of cloud interactions is greatest in the bar, followed by the spiral, causing a higher fraction of both cloud types compared to the disc. While the cloud types also exist in lower resolution simulations, their identification becomes more challenging as they are not well separated populations on the mass-radius relation or distribution plots. Finally, we compare the results for three star formation models to estimate the star formation rate and efficiency in each region.Comment: 21 pages, 14 figures. Accepted for publication in MNRA

    Proto-clusters in the Lambda CDM Universe

    Full text link
    We compare the highly clustered populations of very high redshift galaxies with proto-clusters identified numerically in a standard Λ\LambdaCDM universe (Ω0=0.3,λ0=0.7\Omega_0=0.3, \lambda_0=0.7) simulation. We evolve 256^3 dark matter particles in a comoving box of side 150h^{-1}Mpc. By the present day there are 63 cluster sized objects of mass in excess of 10^{14}h^{-1}Mo in this box. We trace these clusters back to higher redshift finding that their progenitors at z=4--5 are extended regions of typically 20--40 Mpc (comoving) in size, with dark halos of mass in excess of 10^{12}h^{-1}Mo and are overdense by typically 1.3--13 times the cosmological mean density. Comparison with the observation of Lyman alpha emitting (LAEs) galaxies at z=4.86 and at z=4.1 indicates that the observed excess clustering is consistent with that expected for a proto-cluster region if LAEs typically correspond to massive dark halos of more than 10^{12}h^{-1}Mo. We give a brief discussion on the relation between high redshift concentration of massive dark halos and present day rich clusters of galaxies.Comment: 4 pages, 5 figures, Accepted for publication in ApJ Letter

    Do giant molecular clouds care about the galactic structure?

    Get PDF
    We investigate the impact of galactic environment on the properties of simulated giant molecular clouds (GMCs) formed in an M83-type barred spiral galaxy. Our simulation uses a rotating stellar potential to create the grand design features and resolves down to 1.5 pc. From the comparison of clouds found in the bar, spiral and disc regions, we find that the typical GMC is environment independent, with a mass of 5 × 105 M⊙ and radius 11 pc. However, the fraction of clouds in the property distribution tails varies between regions, with larger, more massive clouds with a higher velocity dispersion being found in greatest proportions in the bar, spiral and then disc. The bar clouds also show a bimodality that is not reflected in the spiral and disc clouds except in the surface density, where all three regions show two distinct peaks. We identify these features as being due to the relative proportion of three cloud types, classified via the mass-radius scaling relation, which we label A, B and C. Type A clouds have the typical values listed above and form the largest fraction in each region. Type B clouds are massive giant molecular associations (GMAs) while type C clouds are unbound, transient clouds that form in dense filaments and tidal tails. The fraction of each clouds type depends on the cloud-cloud interactions, which cause mergers to build up the GMA type Bs and tidal features in which the type C clouds are formed. The number of cloud interactions is greatest in the bar, followed by the spiral, causing a higher fraction of both cloud types compared to the disc. While the cloud types also exist in lower resolution simulations, their identification becomes more challenging as they are not well-separated populations on the mass-radius relation or distribution plots. Finally, we compare the results for three star formation models to estimate the star formation rate and efficiency in each galactic regio

    Cluster Morphologies as a Test of Different Cosmological Models

    Full text link
    We investigate how cluster morphology is affected by the cosmological constant in low-density universes. Using high-resolution cosmological N-body/SPH simulations of flat (\Omega_0 = 0.3, \lambda_0 = 0.7, \Lambda CDM) and open (\Omega_0 = 0.3, \lambda_0 = 0, OCDM) cold dark matter universes, we calculate statistical indicators to quantify the irregularity of the cluster morphologies. We study axial ratios, center shifts, cluster clumpiness, and multipole moment power ratios as indicators for the simulated clusters at z=0 and 0.5. Some of these indicators are calculated for both the X-ray surface brightness and projected mass distributions. In \Lambda CDM all these indicators tend to be larger than those in OCDM at z=0. This result is consistent with the analytical prediction of Richstone, Loeb, & Turner, that is, clusters in \Lambda CDM are formed later than in OCDM, and have more substructure at z=0. We make a Kolmogorov-Smirnov test on each indicator for these two models. We then find that the results for the multipole moment power ratios and the center shifts for the X-ray surface brightness are under the significance level (5%). We results also show that these two cosmological models can be distinguished more clearly at z=0 than z = 0.5 by these indicators.Comment: 30pages, 6figures, Accepted for publication in Ap
    corecore