39,438 research outputs found

    Dark Matter Seeding in Neutron Stars

    Full text link
    We present a mechanism that may seed compact stellar objects with stable lumps of quark matter, or {\it strangelets}, through the self-annihilation of gravitationally accreted WIMPs. We show that dark matter particles with masses above a few GeV may provide enough energy in the nuclear medium for quark deconfinement and subsequent strangelet formation. If this happens this effect may then trigger a partial or full conversion of the star into a strange star. We set a new limit on the WIMP mass in the few-GeV range that seems to be consistent with recent indications in dark matter direct detection experiments.Comment: 3 pages, 1 figure. Prepared for 19th Particles and Nuclei International Conference (PANIC 2011), Boston, USA 25-29 Jul 201

    Constraining the Sub-AU-Scale Distribution of Hydrogen and Carbon Monoxide Gas around Young Stars with the Keck Interferometer

    Get PDF
    We present Keck Interferometer observations of T Tauri and Herbig Ae/Be stars with a spatial resolution of a few milliarcseconds and a spectral resolution of ~2000. Our observations span the K-band, and include the Br gamma transition of Hydrogen and the v=2-0 and v=3-1 transitions of carbon monoxide. For several targets we also present data from Keck/NIRSPEC that provide higher spectral resolution, but a seeing-limited spatial resolution, of the same spectral features. We analyze the Br gamma emission in the context of both disk and infall/outflow models, and conclude that the Br gamma emission traces gas at very small stellocentric radii, consistent with the magnetospheric scale. However some Br gamma-emitting gas also seems to be located at radii of >0.1 AU, perhaps tracing the inner regions of magnetically launched outflows. CO emission is detected from several objects, and we generate disk models that reproduce both the KI and NIRSPEC data well. We infer the CO spatial distribution to be coincident with the distribution of continuum emission in most cases. Furthermore the Br gamma emission in these objects is roughly coincident with both the CO and continuum emission. We present potential explanations for the spatial coincidence of continuum, Br gamma, and CO overtone emission, and explore the implications for the low occurrence rate of CO overtone emission in young stars. Finally, we provide additional discussion of V1685 Cyg, which is unusual among our sample in showing large differences in emitting region size and spatial position as a function of wavelength.Comment: Accepted for publication in MNRA

    Self-oscillating control methods for the LCC current-output resonant converter

    Get PDF
    Abstract—A strategy for self-oscillating control of LCC current-output resonant converters, is presented, based on varying the phase-angle between the fundamental of the input voltage and current. Unlike other commonly employed control methodologies,the proposed technique is shown to provide a convenient, linear system input-output characteristic suitable for the design of regulators. The method is shown to have a similar effect as controlling the dc-link supply voltage, in terms of output-voltage/current control. The LCC converter variant is used as an application focus for demonstrating the presented techniques, with simulation and experimental measurements from a prototype converter being used to show the practical benefits. Third-order small and large-signal models are developed, and employed in the formulation of robust output-voltage and output-current control schemes. However, notably, the presented techniques are ultimately generic and readily applicable to other resonant converter variants

    Design of an LCC current-output resonant converter for use as a constant current source

    Get PDF
    A methodology for the design of LCC resonant current-source converters, is presented. Unlike previous techniques, the resulting converter provides near constant steady-state output current over an extended load range when excited at the resonant frequency, through use of a self-oscillating controlle

    Normalized analysis and design of LCC resonant converters

    Get PDF
    Abstract—A normalization of the LCC voltage-output resonant converter performance characteristics, in terms of the tank gain at resonance and the parallel-to-series-capacitor ratio, is presented. The resulting description is subsequently used for the derivation of a design procedure that incorporates the effects of diode losses and the finite charge/discharge time of the parallel capacitor. Unlike previously reported techniques, the resulting normalized behavior of the converter is used to identify design regions to facilitate a reduction in component electrical stresses, and the use of harmonics to transfer real power. Consideration of the use of preferred component values is also given. The underlying methodology is ultimately suitable for incorporation into a software suite for use as part of a rapid interactive design tool. Both simulation results and experimental measurements from a prototype converter are included to demonstrate the attributes of the proposed analysis and design methodologies

    Minimization via duality

    Get PDF
    We show how to use duality theory to construct minimized versions of a wide class of automata. We work out three cases in detail: (a variant of) ordinary automata, weighted automata and probabilistic automata. The basic idea is that instead of constructing a maximal quotient we go to the dual and look for a minimal subalgebra and then return to the original category. Duality ensures that the minimal subobject becomes the maximally quotiented object
    corecore