33,420 research outputs found

    The young massive stellar cluster associated to RCW121

    Full text link
    We report NIR broad and narrow band photometric observations in the direction of the IRAS17149-3916 source that reveal the presence of a young cluster of massive stars embedded in an HII region coincident with RCW121. These observations, together with published radio data, MSX and Spitzer images were used to determine some of the physical parameters of the region. We found 96 cluster member candidates in an area of about 1.5 x 2.0 square arcmin, 30% of them showing excess emission in the NIR. IRS 1, the strongest source in the cluster with an estimated spectral type of O5V-O6V ZAMS based on the color-magnitude diagram, is probably the main ionizing source of the HII region detected at radio wavelengths. Using the integrated Brgamma and the 5 GHz flux densities, we derived a mean visual extinction AV=5.49 magnitudes. From the observed size of the Brgamma extended emission, we calculated the emission measure E and the electron density ne, characteristic of compact HII regions.Comment: 18 pages, 8 figures, accepted for publication on AJ (February/2006

    The double dipole model of theta rhythm generation: Simulation of laminar field potential profiles in dorsal hippocampus of the rat

    Get PDF
    A set of compartmental models of CA1 pyramidal, granular and polymorph cells of the dorsal hippocampus have been used to simulate membrane potentials generated by synaptic activation at various levels along these cells. From the membrane potential distributions the field potentials in dorsal CA1 and the dorsal blade of the dentate area have been simulated using a model based on volume conduction theory. Field potential profiles similar to laminar profiles, found experimentally in the dorsal hippocampus during theta rhythm, could only be simulated by assuming (almost) simultaneous synaptic excitation of the 3 cell types at given sites. The results lead to 2 alternative models for the simultaneous excitation of CA1 pyramidal cells and dentate granular cells during theta rhythm. Other electrophysiological evidence favours the model in which the two neuronal populations are activated distally near the fissure

    Fractal analysis of weld defect patterns obtained by radiographic tests

    Full text link
    This paper presents a fractal analysis of radiographic patterns obtained from specimens with three types of inserted welding defects: lack of fusion, lack of penetration, and porosity. The study focused on patterns of carbon steel beads from radiographs of the International Institute of Welding (IIW). The radiographs were scanned using a greyscale with 256 levels, and the fractal features of the surfaces constructed from the radiographic images were characterized by means of Hurst, detrended-fluctuation, and minimal-cover analyses. A Karhunen-Loeve transformation was then used to classify the curves obtained from the fractal analyses of the various images, and a study of the classification errors was performed. The obtained results indicate that fractal analyses can be an effective additional tool for pattern recognition of weld defects in radiographic tests.Comment: 7 pages, 2 figures. To appear AIP Conference Proceedings - QNDE 200

    Neural networks with dynamical synapses: from mixed-mode oscillations and spindles to chaos

    Full text link
    Understanding of short-term synaptic depression (STSD) and other forms of synaptic plasticity is a topical problem in neuroscience. Here we study the role of STSD in the formation of complex patterns of brain rhythms. We use a cortical circuit model of neural networks composed of irregular spiking excitatory and inhibitory neurons having type 1 and 2 excitability and stochastic dynamics. In the model, neurons form a sparsely connected network and their spontaneous activity is driven by random spikes representing synaptic noise. Using simulations and analytical calculations, we found that if the STSD is absent, the neural network shows either asynchronous behavior or regular network oscillations depending on the noise level. In networks with STSD, changing parameters of synaptic plasticity and the noise level, we observed transitions to complex patters of collective activity: mixed-mode and spindle oscillations, bursts of collective activity, and chaotic behaviour. Interestingly, these patterns are stable in a certain range of the parameters and separated by critical boundaries. Thus, the parameters of synaptic plasticity can play a role of control parameters or switchers between different network states. However, changes of the parameters caused by a disease may lead to dramatic impairment of ongoing neural activity. We analyze the chaotic neural activity by use of the 0-1 test for chaos (Gottwald, G. & Melbourne, I., 2004) and show that it has a collective nature.Comment: 7 pages, Proceedings of 12th Granada Seminar, September 17-21, 201

    Critical phenomena and noise-induced phase transitions in neuronal networks

    Get PDF
    We study numerically and analytically first- and second-order phase transitions in neuronal networks stimulated by shot noise (a flow of random spikes bombarding neurons). Using an exactly solvable cortical model of neuronal networks on classical random networks, we find critical phenomena accompanying the transitions and their dependence on the shot noise intensity. We show that a pattern of spontaneous neuronal activity near a critical point of a phase transition is a characteristic property that can be used to identify the bifurcation mechanism of the transition. We demonstrate that bursts and avalanches are precursors of a first-order phase transition, paroxysmal-like spikes of activity precede a second-order phase transition caused by a saddle-node bifurcation, while irregular spindle oscillations represent spontaneous activity near a second-order phase transition caused by a supercritical Hopf bifurcation. Our most interesting result is the observation of the paroxysmal-like spikes. We show that a paroxysmal-like spike is a single nonlinear event that appears instantly from a low background activity with a rapid onset, reaches a large amplitude, and ends up with an abrupt return to lower activity. These spikes are similar to single paroxysmal spikes and sharp waves observed in EEG measurements. Our analysis shows that above the saddle-node bifurcation, sustained network oscillations appear with a large amplitude but a small frequency in contrast to network oscillations near the Hopf bifurcation that have a small amplitude but a large frequency. We discuss an amazing similarity between excitability of the cortical model stimulated by shot noise and excitability of the Morris-Lecar neuron stimulated by an applied current.Comment: 15 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1304.323
    • …
    corecore