642 research outputs found

    Signaling thresholds govern heterogeneity in IL-7-receptor-mediated responses of naïve CD8+ T cells

    Get PDF
    Variable sensitivity to T-cell-receptor (TCR)- and IL-7-receptor (IL-7R)-mediated homeostatic signals among naïve T cells has thus far been largely attributed to differences in TCR specificity. We show here that even when withdrawn from self-peptide-induced TCR stimulation, CD8+ T cells exhibit heterogeneous responses to interleukin-7 (IL-7) that are mechanistically associated with IL-7R expression differences that correlate with relative CD5 expression. Whereas CD5hi and CD5lo T cells survive equivalently in the presence of saturating IL-7 levels in vitro, CD5hi T cells proliferate more robustly. Conversely, CD5lo T cells exhibit prolonged survival when withdrawn from homeostatic stimuli. Through quantitative experimental analysis of signaling downstream of IL-7R, we find that the enhanced IL-7 responsiveness of CD5hi T cells is directly related to their greater surface IL-7R expression. Further, we identify a quantitative threshold in IL-7R-mediated signaling capacity required for proliferation that lies well above an analogous threshold requirement for survival. These distinct thresholds allow subtle differences in IL-7R expression between CD5lo and CD5hi T cells to give rise to significant variations in their respective IL-7-induced proliferation, without altering survival. Heterogeneous IL-7 responsiveness is observed similarly in vivo, with CD5hi naïve T cells proliferating preferentially in lymphopenic mice or lymphoreplete mice administered with exogenous IL-7. However, IL-7 in lymphoreplete mice appears to be maintained at an effective level for preserving homeostasis, such that neither CD5hi IL-7Rhi nor CD5lo IL-7Rlo T cells proliferate or survive preferentially. Our findings indicate that IL-7R-mediated signaling not only maintains the size but also impacts the diversity of the naïve T-cell repertoire

    Tandem phosphorylation within an intrinsically disordered region regulates ACTN4 function

    Get PDF
    Phosphorylated residues occur preferentially in the intrinsically disordered regions of eukaryotic proteins. In the disordered amino-terminal region of human a-actinin-4 (ACTN4), Tyr[superscript 4] and Tyr[superscript 31] are phosphorylated in cells stimulated with epidermal growth factor (EGF), and a mutant with phosphorylation-mimicking mutations of both tyrosines exhibits reduced interaction with actin in vitro. Cleavage of ACTN4 by m-calpain, a protease that in motile cells is predominantly activated at the rear, removes the Tyr[superscript 4] site. We found that introducing a phosphomimetic mutation at only Tyr[superscript 31] was sufficient to inhibit the interaction with actin in vitro. However, molecular dynamics simulations predicted that Tyr[superscript 31] is mostly buried and that phosphorylation of Tyr[superscript 4] would increase the solvent exposure and thus kinase accessibility of Tyr[superscript 31]. In fibroblast cells, EGF stimulation increased tyrosine phosphorylation of a mutant form of ACTN4 with a phosphorylation-mimicking residue at Tyr[superscript 4], whereas a truncated mutant representing the product of m-calpain cleavage exhibited EGF-stimulated tyrosine phosphorylation at a background amount similar to that observed for a double phosphomimetic mutant of Tyr[superscript 4] and Tyr[superscript 31]. We also found that inhibition of the receptor tyrosine kinases of the TAM family, such as AXL, blocked EGF-stimulated tyrosine phosphorylation of ACTN4. Mathematical modeling predicted that the kinetics of phosphorylation at Tyr[superscript 31] can be dictated by the kinase affinity for Tyr[superscript 4]. This study suggests that tandem-site phosphorylation within intrinsically disordered regions provides a mechanism for a site to function as a switch to reveal a nearby function-regulating site.National Institutes of Health (U.S.) (Grant R01 GM69668

    Self-consistent theory of reversible ligand binding to a spherical cell

    Full text link
    In this article, we study the kinetics of reversible ligand binding to receptors on a spherical cell surface using a self-consistent stochastic theory. Binding, dissociation, diffusion and rebinding of ligands are incorporated into the theory in a systematic manner. We derive explicitly the time evolution of the ligand-bound receptor fraction p(t) in various regimes . Contrary to the commonly accepted view, we find that the well-known Berg-Purcell scaling for the association rate is modified as a function of time. Specifically, the effective on-rate changes non-monotonically as a function of time and equals the intrinsic rate at very early as well as late times, while being approximately equal to the Berg-Purcell value at intermediate times. The effective dissociation rate, as it appears in the binding curve or measured in a dissociation experiment, is strongly modified by rebinding events and assumes the Berg-Purcell value except at very late times, where the decay is algebraic and not exponential. In equilibrium, the ligand concentration everywhere in the solution is the same and equals its spatial mean, thus ensuring that there is no depletion in the vicinity of the cell. Implications of our results for binding experiments and numerical simulations of ligand-receptor systems are also discussed.Comment: 23 pages with 4 figure

    Exponential Distribution of Locomotion Activity in Cell Cultures

    Get PDF
    In vitro velocities of several cell types have been measured using computer controlled video microscopy, which allowed to record the cells' trajectories over several days. On the basis of our large data sets we show that the locomotion activity displays a universal exponential distribution. Thus, motion resulting from complex cellular processes can be well described by an unexpected, but very simple distribution function. A simple phenomenological model based on the interaction of various cellular processes and finite ATP production rate is proposed to explain these experimental results.Comment: 4 pages, 3 figure

    Marrow-Derived Stem Cell Motility in 3D Synthetic Scaffold Is Governed by Geometry Along With Adhesivity and Stiffness

    Get PDF
    Author Manuscript 2012 May 21.Design of 3D scaffolds that can facilitate proper survival, proliferation, and differentiation of progenitor cells is a challenge for clinical applications involving large connective tissue defects. Cell migration within such scaffolds is a critical process governing tissue integration. Here, we examine effects of scaffold pore diameter, in concert with matrix stiffness and adhesivity, as independently tunable parameters that govern marrow-derived stem cell motility. We adopted an “inverse opal” processing technique to create synthetic scaffolds by crosslinking poly(ethylene glycol) at different densities (controlling matrix elastic moduli or stiffness) and small doses of a heterobifunctional monomer (controlling matrix adhesivity) around templating beads of different radii. As pore diameter was varied from 7 to 17 µm (i.e., from significantly smaller than the spherical cell diameter to approximately cell diameter), it displayed a profound effect on migration of these stem cells—including the degree to which motility was sensitive to changes in matrix stiffness and adhesivity. Surprisingly, the highest probability for substantive cell movement through pores was observed for an intermediate pore diameter, rather than the largest pore diameter, which exceeded cell diameter. The relationships between migration speed, displacement, and total path length were found to depend strongly on pore diameter. We attribute this dependence to convolution of pore diameter and void chamber diameter, yielding different geometric environments experienced by the cells within. Bioeng. 2011; 108:1181–1193(National Institute of General Medical Sciences (U.S.) (NRSA Fellowship GM083472)National Institutes of Health (U.S.) (National Institute of General Medical Sciences (U.S.) Cell Migration Consortium Grant GM064346)National Science Foundation (U.S.) (CAREER CBET-0644846

    Multi-Scale In Vivo Systems Analysis Reveals the Influence of Immune Cells on TNF-α-Induced Apoptosis in the Intestinal Epithelium

    Get PDF
    Intestinal epithelial cells exist within a complex environment that affects how they interpret and respond to stimuli. We have applied a multi-scale in vivo systems approach to understand how intestinal immune cells communicate with epithelial cells to regulate responses to inflammatory signals. Multivariate modeling analysis of a large dataset composed of phospho-signals, cytokines, and immune cell populations within the intestine revealed an intimate relationship between immune cells and the epithelial response to TNF-α. Ablation of lymphocytes in the intestine prompted a decrease in the expression of MCP-1, which in turn increased the steady state number of intestinal plasmacytoid dendritic cells (pDCs). This change in the immune compartment affected the intestinal cytokine milieu and subsequent epithelial cell signaling network, with cells becoming hypersensitive to TNF-α-induced apoptosis in a way that could be predicted by mathematical modeling. In summary, we have uncovered a novel cellular network that regulates the response of intestinal epithelial cells to inflammatory stimuli in an in vivo setting

    Hybrid immunity expands the functional humoral footprint of both mRNA and vector-based SARS-CoV-2 vaccines

    Get PDF
    Funding Information: We thank Nancy Zimmerman, Mark and Lisa Schwartz, an anonymous donor (financial support), Terry and Susan Ragon, and the SAMANA Kay MGH Research Scholars award for support. We acknowledge support from the Ragon Institute of Mass General, MIT, and Harvard (to G.A.) the Massachusetts Consortium on Pathogen Readiness (MassCPR) (to G.A.), and the National Institutes of Health ( 3R37AI080289-11S1 , R01AI146785 , U19AI42790–01 , U19AI135995–02 , U19AI42790-01 , 1U01CA260476 – 01 , and CIVIC75N93019C00052 ) (to G.A.). Publisher Copyright: © 2023Despite the successes of current coronavirus disease 2019 (COVID-19) vaccines, waning immunity, the emergence of variants of concern, and breakthrough infections among vaccinees have begun to highlight opportunities to improve vaccine platforms. Real-world vaccine efficacy studies have highlighted the reduced risk of breakthrough infections and diseases among individuals infected and vaccinated, referred to as hybrid immunity. Thus, we sought to define whether hybrid immunity shapes the humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following Pfizer/BNT162b2, Moderna mRNA-1273, ChadOx1/AZD1222, and Ad26.COV2.S vaccination. Each vaccine exhibits a unique functional humoral profile in vaccination only or hybrid immunity. However, hybrid immunity shows a unique augmentation of S2-domain-specific functional immunity that was poorly induced for the vaccination only. These data highlight the importance of natural infection in breaking the immunodominance away from the evolutionarily unstable S1 domain and potentially affording enhanced cross-variant protection by targeting the more highly conserved S2 domain of SARS-CoV-2.publishersversionPeer reviewe

    Hybrid immunity expands the functional humoral footprint of both mRNA and vector-based SARS-CoV-2 vaccines

    Get PDF
    Despite the successes of current coronavirus disease 2019 (COVID-19) vaccines, waning immunity, the emergence of variants of concern, and breakthrough infections among vaccinees have begun to highlight opportunities to improve vaccine platforms. Real-world vaccine efficacy studies have highlighted the reduced risk of breakthrough infections and diseases among individuals infected and vaccinated, referred to as hybrid immunity. Thus, we sought to define whether hybrid immunity shapes the humoral immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following Pfizer/BNT162b2, Moderna mRNA-1273, ChadOx1/AZD1222, and Ad26.COV2.S vaccination. Each vaccine exhibits a unique functional humoral profile in vaccination only or hybrid immunity. However, hybrid immunity shows a unique augmentation of S2-domain-specific functional immunity that was poorly induced for the vaccination only. These data highlight the importance of natural infection in breaking the immunodominance away from the evolutionarily unstable S1 domain and potentially affording enhanced cross-variant protection by targeting the more highly conserved S2 domain of SARS-CoV-2

    Effectiveness and Safety of Dabigatran and Warfarin in Real-World US Patients With Non-Valvular Atrial Fibrillation: A Retrospective Cohort Study

    Get PDF
    BackgroundThe recent availability of dabigatran, a novel oral anticoagulant, provided a new treatment option for stroke prevention in atrial fibrillation beyond warfarin, the main therapy for years. Little is known about their real‐world comparative effectiveness and safety, even less among patient demographic and clinical subgroups.Methods and ResultsUsing a cohort of non‐valvular AF patients initiating anticoagulation from October 2010 to December 2012 drawn from a large US database of commercial and Medicare supplement claims, we applied propensity score weights to Cox proportional hazards regression to assess the comparative effectiveness and safety of dabigatran versus warfarin. Analyses were repeated among clinical and demographic subgroups using stratum‐specific propensity scores as an exploratory analysis. Of the 64 935 patients initiating anticoagulation, 32.5% used dabigatran. Compared with warfarin, dabigatran was associated with a lower risk of ischemic stroke or systemic embolism (composite adjusted Hazard Ratio [aHR], 95% CI: 0.86, 95% CI: 0.79 to 0.93), hemorrhagic stroke (aHR: 0.51, 0.40 to 0.65), and acute myocardial infarction (aHR: 0.88, 95% CI: 0.77 to 0.99), and no relation was seen between dabigatran and the composite harm outcome (aHR: 0.94, 95% CI: 0.87 to 1.01). However, dabigatran was associated with a higher risk of gastrointestinal bleeding (aHR: 1.11, 95% CI: 1.02 to 1.22). Estimates of effectiveness and safety appeared to be mostly similar across subgroups.ConclusionsDabigatran could be a safe and potentially more effective alternative to warfarin in patients with atrial fibrillation managed in routine practice settings
    corecore