9,925 research outputs found
Comparison of average larval fish vertical distributions among species exhibiting different transport pathways on the southeast United States continental shelf
Water currents are vertically structured in many marine systems and as a result, vertical movements by fish larvae and zooplankton affect horizontal transport (Power, 1984).
In estuaries, the vertical movements of larvae with tidal periods can result in their retention or ingress (Fortier
and Leggett, 1983; Rijnsdorp et al., 1985; Cronin and Forward, 1986; Forward et al., 1999). On the continental
shelf, the vertical movements of organisms interact daily and ontogenetically with depth-varying currents to affect horizontal transport (Pillar et al., 1989; Barange and Pillar, 1992; Cowen et al., 1993, 2000; Batchelder et al., 2002)
Atmosphere-Ocean Ozone Exchange – A Global Modeling Study of Biogeochemical, Atmospheric and Water-Side Turbulence Dependencies
The significance of the removal of tropospheric ozone by the oceans, covering ~2/3 of the Earth's surface, has only been addressed in a few studies involving water tank, aircraft, and tower flux measurements. On the basis of results from these few observations of the ozone dry deposition velocity (VdO3), atmospheric chemistry models generally apply an empirical, constant ocean uptake rate of 0.05 cm s-1. This value is substantially smaller than the atmospheric turbulent transport velocity for ozone. On the other hand, the uptake is higher than expected from the solubility of ozone in clean water alone, suggesting that there is an enhancement in oceanic ozone uptake, e.g., through a chemical destruction mechanism. We present an evaluation of a global-scale analysis with a new mechanistic representation of atmosphere-ocean ozone exchange. The applied atmosphere chemistry-climate model includes not only atmospheric but also waterside turbulence and the role of waterside chemical loss processes as a function of oceanic biogeochemistry. The simulations suggest a larger role of biogeochemistry in tropical and subtropical ozone oceanic uptake with a relative small temporal variability, whereas in midlatitude and high-latitude regions, highly variable ozone uptake rates are expected because of the stronger influence of waterside turbulence. Despite a relatively large range in the explicitly calculated ocean uptake rate, there is a surprisingly small sensitivity of simulated Marine Boundary Layer ozone concentrations compared to the sensitivity for the commonly applied constant ocean uptake approach. This small sensitivity points at compensating effects through inclusion of the process-based ocean uptake mechanisms to consider variability in oceanic O3 deposition consistent with that in atmospheric and oceanic physical, chemical, and biological processe
Relationships between Larval and Juvenile Abundance of Winter-Spawned Fishes in North Carolina, USA
We analyzed the relationships between the larval and juvenile abundances of selected estuarine-dependent fishes that spawn during the winter in continental shelf waters of the U.S. Atlantic coast. Six species were included in the analysis based on their ecological and economic importance and relative abundance in available surveys: spot Leiostomus xanthurus, pinfish Lagodon rhomboides, southern flounder Paralichthys lethostigma, summer flounder Paralichthys dentatus, Atlantic croaker Micropogonias undulatus, and Atlantic menhaden Brevoortia tyrannus. Cross-correlation analysis was used to examine the relationships between the larval and juvenile abundances within species. Tests of synchrony across species were used to find similarities in recruitment dynamics for species with similar winter shelf-spawning life-history strategies. Positive correlations were found between the larval and juvenile abundances for three of the six selected species (spot, pinfish, and southern flounder). These three species have similar geographic ranges that primarily lie south of Cape Hatteras. There were no significant correlations between the larval and juvenile abundances for the other three species (summer flounder, Atlantic croaker, and Atlantic menhaden); we suggest several factors that could account for the lack of a relationship. Synchrony was found among the three southern species within both the larval and juvenile abundance time series. These results provide support for using larval ingress measures as indices of abundance for these and other species with similar geographic ranges and winter shelf-spawning life-history strategies
Movement disorders and syndromic autism: a systematic review
Movement disorders are reported in idiopathic autism but the extent to which comparable movement disorders are found in syndromic/co-morbid autism is unknown. A systematic search of Medline, Embase, PsychINFO and CINAHL on the prevalence of specific movement disorder in syndromic autism associated with specific genetic syndromes identified 16 papers, all relating to Angelman syndrome or Rett syndrome. Prevalence rates of 72.7–100% and 25.0–27.3% were reported for ataxia and tremor, respectively, in Angelman syndrome. In Rett syndrome, prevalence rates of 43.6–50% were reported for ataxia and 27.3–48.3% for tremor with additional reports of dystonia, rigidity and pyramidal signs. However, reliable assessment measures were rarely used and recruitment was often not described in sufficient detail
Bridging the Semantic Gap in Multimedia Information Retrieval: Top-down and Bottom-up approaches
Semantic representation of multimedia information is vital for enabling the kind of multimedia search capabilities that professional searchers require. Manual annotation is often not possible because of the shear scale of the multimedia information that needs indexing. This paper explores the ways in which we are using both top-down, ontologically driven approaches and bottom-up, automatic-annotation approaches to provide retrieval facilities to users. We also discuss many of the current techniques that we are investigating to combine these top-down and bottom-up approaches
Behavioral Assessment of Emotion Discrimination, Emotion Regulation, and Cognitive Control in Childhood, Adolescence, and Adulthood
Emotion discrimination, emotion regulation, and cognitive control are three related, yet separable processes that emerge over the course of development. The current study tested 100 children, adolescents, and adults on an Emotional Go/Nogo task, illustrating the ability of this paradigm to identify the unique developmental patterns for each of these three processes in the context of both positive (happy) and negative emotions (fear, sad, and anger), across three different age groups. Consistent with previous literature, our findings show that emotion discrimination and regulatory abilities (both cognitive control and emotion regulation) improve steadily for each age group, with each age group showing unique patterns of performance. The findings suggest that emotion regulation is constructed from basic cognition control and emotion discrimination skills. The patterns of behavior from the Emotional Go/Nogo task provide normative benchmark data across a wide range of emotions that can be used for future behavioral and neuroimaging studies that examine the developmental construction of emotion regulatory processes
Estimating the Energy Density of Fish: The Importance of Ontogeny
Ontogenetic patterns in the percent dry weight (%DW) and energy density (joules per gram of wet weight) were studied in the early life stages of the subtropical estuarine and marine gray snapper Lutjanus griseus and the warmtemperate
estuarine and marine spotted seatrout Cynoscion nebulosus. The %DW was variable for individuals of both species but increased significantly through larval to juvenile stages (50 mm). The lipid percentage, which was determined only for gray snapper, was also variable between individuals
but showed significant increase with body size. Strong
relationships between percent dry weight and energy density
were evident for both species; however, the slopes of
regressions were significantly lower than in general multispecies models, demonstrating the need for species- and stagespecific energy density data in bioenergetics models
Juvenile fish assemblages collected on unconsolidated sediments of the southeast United States continental shelf
This paper is not subject to U.S. copyright. The definitive version was published in Fishery Bulletin 104 (2006): 256-277.Patterns were investigated in juvenile fish use of unconsolidated sediments on the southeast United States continental shelf off Georgia. Juvenile fish and environmental data
were sampled at ten stations along a
110-km cross-shelf transect, including
four stations surrounding Gray’s Reef
National Marine Sanctuary (Gray’s
Reef NMFS). Cross-shelf stations
were sampled approximately quarterly
from spring 2000 to winter 2002.
Additional stations were sampled on
three transects inshore of Gray’s Reef
NMS and four transects offshore of
the Sanctuary during three cruises
to investigate along-shelf patterns in
the juvenile fish assemblages. Samples
were collected in beam trawls,
and 121 juvenile taxa, of which 33
were reef-associated species, were
identif ied. Correspondence analysis
on untransformed juvenile fish
abundance indicated a cross-shelf
gradient in assemblages, and the
station groupings and assemblages
varied seasonally. During the spring,
fall, and winter, three cross-shelf
regions were identified: inner-shelf,
mid-shelf, and outer-shelf regions. In
the summer, the shelf consisted of a
single juvenile fish assemblage. Water
depth was the primary environmental
variable correlated with cross-shelf
assemblages. However, salinity, density,
and water column stratification
also correlated with the distribution
of assemblages during the spring, fall,
and winter, and along with temperature
likely inf luenced the distribution
of juvenile fish. No along-shelf
spatial patterns were found in the
juvenile fish assemblages, but the
along-shelf dimension sampled was
small (~60 km). Our results revealed
that a number of commercially and
recreationally important species used
unconsolidated sediments on the shelf
off Georgia as juvenile habitat. We
conclude that management efforts
would be improved through a greater
recognition of the importance of these
habitats to fish production and the
interconnectedness of multiple habitats
in the southeast U.S. continental
shelf ecosystem.Gray’s Reef National Marine Sanctuary,
the National Marine Sanctuary Office, and Center for Coastal Fisheries and Habitat Research provided funding for the project
Charge injection instability in perfect insulators
We show that in a macroscopic perfect insulator, charge injection at a
field-enhancing defect is associated with an instability of the insulating
state or with bistability of the insulating and the charged state. The effect
of a nonlinear carrier mobility is emphasized. The formation of the charged
state is governed by two different processes with clearly separated time
scales. First, due to a fast growth of a charge-injection mode, a localized
charge cloud forms near the injecting defect (or contact). Charge injection
stops when the field enhancement is screened below criticality. Secondly, the
charge slowly redistributes in the bulk. The linear instability mechanism and
the final charged steady state are discussed for a simple model and for
cylindrical and spherical geometries. The theory explains an experimentally
observed increase of the critical electric field with decreasing size of the
injecting contact. Numerical results are presented for dc and ac biased
insulators.Comment: Revtex, 7pages, 4 ps figure
- …