12,275 research outputs found

    Heavy Quark Physics From Lattice QCD

    Get PDF
    We review the application of lattice QCD to the phenomenology of b- and c-quarks. After a short discussion of the lattice techniques used to evaluate hadronic matrix elements and the corresponding systematic uncertainties, we summarise results for leptonic decay constants, B--Bbar mixing, semileptonic and rare radiative decays. A discussion of the determination of heavy quark effective theory parameters is followed by an explanation of the difficulty in applying lattice methods to exclusive nonleptonic decays.Comment: 52 pages LaTeX with 10 eps files. Requires: hfsprocl.sty (included) plus axodraw.sty, rotating.sty and array.sty. To appear in Heavy Flavours (2nd edition) edited by A J Buras and M Lindner (World Scientific, Singapore). Revised version corrects typo in axis labelling of Fig 1

    Persistence and the Random Bond Ising Model in Two Dimensions

    Get PDF
    We study the zero-temperature persistence phenomenon in the random bond ±J\pm J Ising model on a square lattice via extensive numerical simulations. We find strong evidence for ` blocking\rq regardless of the amount disorder present in the system. The fraction of spins which {\it never} flips displays interesting non-monotonic, double-humped behaviour as the concentration of ferromagnetic bonds pp is varied from zero to one. The peak is identified with the onset of the zero-temperature spin glass transition in the model. The residual persistence is found to decay algebraically and the persistence exponent θ(p)0.9\theta (p)\approx 0.9 over the range 0.1p0.90.1\le p\le 0.9. Our results are completely consistent with the result of Gandolfi, Newman and Stein for infinite systems that this model has ` mixed\rq behaviour, namely positive fractions of spins that flip finitely and infinitely often, respectively. [Gandolfi, Newman and Stein, Commun. Math. Phys. {\bf 214} 373, (2000).]Comment: 9 pages, 5 figure

    Second order perturbation theory for spin-orbit resonances

    Full text link
    We implement Lie transform perturbation theory to second order for the planar spin-orbit problem. The perturbation parameter is the asphericity of the body, with the orbital eccentricity entering as an additional parameter. We study first and second order resonances for different values of these parameters. For nearly spherical bodies like Mercury and the Moon first order perturbation theory is adequate, whereas for highly aspherical bodies like Hyperion the spin is mostly chaotic and perturbation theory is of limited use. However, in between, we identify a parameter range where second order perturbation theory is useful and where as yet unidentified objects may be in second order resonances.Comment: To appear in A

    Hair radioactivity as a measure of exposure to radioisotopes

    Get PDF
    Since many radioisotopes accumulate in hair, this tropism was investigated by comparing the radioactivity of shaved with plucked hair collected from rats at various time intervals up to 24 hrs after intravenous injection of the ecologically important radioisotopes, iodine-131, manganese-54, strontium-85, and zinc-65. The plucked hair includes the hair follicles where biochemical transformations are taking place. The data indicate a slight surge of each radioisotpe into the hair immediately after injection, a variation of content of each radionuclide in the hair, and a greater accumulation of radioactivity in plucked than in shaved hair. These results have application not only to hair as a measure of exposure to radioisotopes, but also to tissue damage and repair at the hair follicle

    Assessing the Effectiveness of Automated Emotion Recognition in Adults and Children for Clinical Investigation

    Get PDF
    Recent success stories in automated object or face recognition, partly fuelled by deep learning artificial neural network (ANN) architectures, has led to the advancement of biometric research platforms and, to some extent, the resurrection of Artificial Intelligence (AI). In line with this general trend, inter-disciplinary approaches have taken place to automate the recognition of emotions in adults or children for the benefit of various applications such as identification of children emotions prior to a clinical investigation. Within this context, it turns out that automating emotion recognition is far from being straight forward with several challenges arising for both science(e.g., methodology underpinned by psychology) and technology (e.g., iMotions biometric research platform). In this paper, we present a methodology, experiment and interesting findings, which raise the following research questions for the recognition of emotions and attention in humans: a) adequacy of well-established techniques such as the International Affective Picture System (IAPS), b) adequacy of state-of-the-art biometric research platforms, c) the extent to which emotional responses may be different among children or adults. Our findings and first attempts to answer some of these research questions, are all based on a mixed sample of adults and children, who took part in the experiment resulting into a statistical analysis of numerous variables. These are related with, both automatically and interactively, captured responses of participants to a sample of IAPS pictures

    Highly Ionized High-Velocity Clouds toward PKS 2155-304 and Markarian 509

    Full text link
    To gain insight into four highly ionized high-velocity clouds (HVCs) discovered by Sembach et al. (1999), we have analyzed data from the Hubble Space Telescope (HST) and Far Ultraviolet Spectroscopic Explorer (FUSE) for the PKS 2155-304 and Mrk 509 sight lines. We measure strong absorption in OVI and column densities of multiple ionization stages of silicon (SiII/III/IV) and carbon (CII/III/IV). We interpret this ionization pattern as a multiphase medium that contains both collisionally ionized and photoionized gas. Toward PKS 2155-304, for HVCs at -140 and -270 km/s, respectively, we measure logN(OVI)=13.80+/-0.03 and log N(OVI)=13.56+/-0.06; from Lyman series absorption, we find log N(HI)=16.37^(+0.22)_(-0.14) and 15.23^(+0.38)_(-0.22). The presence of high-velocity OVI spread over a broad (100 km/s) profile, together with large amounts of low-ionization species, is difficult to reconcile with the low densities, n=5x10^(-6) cm^(-3), in the collisional/photoionization models of Nicastro et al. (2002), although the HVCs show a similar relation in N(SiIV)/N(CIV) versus N(CII)/N(CIV) as high-z intergalactic clouds. Our results suggest that the high-velocity OVI in these absorbers do not necessarily trace the WHIM, but instead may trace HVCs with low total hydrogen column density. We propose that the broad high-velocity OVI absorption arises from shock ionization, at bowshock interfaces produced from infalling clumps of gas with velocity shear. The similar ratios of high ions for HVC Complex C and these highly ionized HVCs suggest a common production mechanism in the Galactic halo.Comment: 38 pages, including 10 figures. ApJ, 10 April, 2004. Replaced with accepted versio
    corecore