25,341 research outputs found

    Relativistic r-modes and shear viscosity

    Get PDF
    We derive the relativistic equations for stellar perturbations, including in a consistent way shear viscosity in the stress-energy tensor, and we numerically integrate our equations in the case of large viscosity. We consider the slow rotation approximation, and we neglect the coupling between polar and axial perturbations. In our approach, the frequency and damping time of the emitted gravitational radiation are directly obtained. We find that, approaching the inviscid limit from the finite viscosity case, the continuous spectrum is regularized. Constant density stars, polytropic stars, and stars with realistic equations of state are considered. In the case of constant density stars and polytropic stars, our results for the viscous damping times agree, within a factor two, with the usual estimates obtained by using the eigenfunctions of the inviscid limit. For realistic neutron stars, our numerical results give viscous damping times with the same dependence on mass and radius as previously estimated, but systematically larger of about 60%.Comment: 8 pages, 7 figures, to appear in the Proceedings of the Albert Einstein Century International Conference, Paris, France, July 200

    Features controlling the early stages of creep deformation of Waspaloy

    Get PDF
    A model has been presented for describing primary and second stage creep. General equations were derived for the amount and time of primary creep. It was shown how the model can be used to extrapolate creep data. Applicability of the model was demonstrated for Waspaloy with gamma prime particle sizes from 75 - 1000 A creep tested in the temperature range 1000 - 1400 F (538 - 760 C). Equations were developed showing the dependence of creep parameters on dislocation mechanism, gamma prime volume fraction and size

    Unstable g-modes in Proto-Neutron Stars

    Full text link
    In this article we study the possibility that, due to non-linear couplings, unstable g-modes associated to convective motions excite stable oscillating g-modes. This problem is of particular interest, since gravitational waves emitted by a newly born proto-neutron star pulsating in its stable g-modes would be in the bandwidth of VIRGO and LIGO. Our results indicate that nonlinear saturation of unstable modes occurs at relatively low amplitudes, and therefore, even if there exists a coupling between stable and unstable modes, it does not seem to be sufficiently effective to explain, alone, the excitation of the oscillating g-modes found in hydrodynamical simulations.Comment: 10 pages, 3 figures, to appear on Class. Quant. Gra

    Empirical orbit determination using Apollo 14 data

    Get PDF
    An empirical orbit determination method is shown to yield highly accurate navigation results when applied to lunar orbit tracking data. Regressions and predictions of free flight Apollo 14 tracking data exhibit minimal residual growth, and the solution orbital elements behave in a very consistent manner. Solutions from data acquired during propulsive maneuvers result in degraded predictions. The residual patterns from free flight processing are shown to be consistent from pass to pass and are correlated with lunar topographic features

    The FLUKA Monte Carlo, non-perturbative QCD and Cosmic Ray cascades

    Full text link
    The FLUKA Monte Carlo code, presently used in cosmic ray physics, contains packages to sample soft hadronic processes which are built according to the Dual Parton Model. This is a phenomenological model capable of reproducing many of the features of hadronic collisions in the non perturbative QCD regime. The basic principles of the model are summarized and, as an example, the associated Lambda-K production is discussed. This is a process which has some relevance for the calculation of atmospheric neutrino fluxes.Comment: Extended version of the work for the proceedings of the workshop on QCD at Cosmic Ray Energies, Erice, Aug. 30 - Sep. 4 2004, Ital

    Chern-Simons Field Theories with Non-semisimple Gauge Group of Symmetry

    Get PDF
    Subject of this work is a class of Chern-Simons field theories with non-semisimple gauge group, which may well be considered as the most straightforward generalization of an Abelian Chern-Simons field theory. As a matter of fact these theories, which are characterized by a non-semisimple group of gauge symmetry, have cubic interactions like those of non-abelian Chern-Simons field theories, but are free from radiative corrections. Moreover, at the tree level in the perturbative expansion,there are only two connected tree diagrams, corresponding to the propagator and to the three vertex originating from the cubic interaction terms. For such theories it is derived here a set of BRST invariant observables, which lead to metric independent amplitudes. The vacuum expectation values of these observables can be computed exactly. From their expressions it is possible to isolate the Gauss linking number and an invariant of the Milnor type, which describes the topological relations among three or more closed curves.Comment: 16 pages, 1 figure, plain LaTeX + psfig.st

    Non-perturbative fixed points and renormalization group improved effective potential

    Get PDF
    The stability conditions of a renormalization group improved effective potential have been discussed in the case of scalar QED and QCD with a colorless scalar. We calculate the same potential in these models assuming the existence of non-perturbative fixed points associated to a conformal phase. In the case of scalar QED the barrier of instability found previously is barely displaced as we approach the fixed point, and in the case of QCD with a colorless scalar not only the barrier is changed but the local minimum of the potential is also changed.Comment: 6 pages, 8 figures, References added. Matching the journal versio
    corecore