2,546 research outputs found
Bosonic D=11 supergravity from a generalized Chern-Simons action
It is shown that the action of the bosonic sector of D=11 supergravity may be
obtained by means of a suitable scaling of the originally dimensionless fields
of a generalized Chern-Simons action. This follows from the eleven-form
CS-potential of the most general linear combination of closed, gauge invariant
twelve-forms involving the sp(32)-valued two-form curvatures supplemented by a
three-form field. In this construction, the role of the skewsymmetric
four-index auxiliary function needed for the first order formulation of
supergravity is played by the gauge field associated with the five Lorentz
indices generator of the bosonic sp(32) subalgebra of osp(1|32).Comment: Misprints corrected, to appear in NPB plain latex, no figures, 25
page
Dynamics of magnetic domain wall motion after nucleation: Dependence on the wall energy
The dynamics of magnetic domain wall motion in the FeNi layer of a
FeNi/Al2O3/Co trilayer has been investigated by a combination of x-ray magnetic
circular dichroism, photoelectron emission microscopy, and a stroboscopic
pump-probe technique. The nucleation of domains and subsequent expansion by
domain wall motion in the FeNi layer during nanosecond-long magnetic field
pulses was observed in the viscous regime up to the Walker limit field. We
attribute an observed delay of domain expansion to the influence of the domain
wall energy that acts against the domain expansion and that plays an important
role when domains are small.Comment: Accepted for publication in Physical Review Letter
Surfactant effect in heteroepitaxial growth. The Pb - Co/Cu(111) case
A MonteCarlo simulations study has been performed in order to study the
effect of Pb as surfactant on the initial growth stage of Co/Cu(111). The main
characteristics of Co growing over Cu(111) face, i.e. the decorated double
layer steps, the multiple layer islands and the pools of vacancies, disappear
with the pre-evaporation of a Pb monolayer. Through MC simulations, a full
picture of these complex processes is obtained. Co quickly diffuses through the
Pb monolayer exchanging place with Cu atoms at the substrate. The exchange
process diffusion inhibits the formation of pure Co islands, reducing the
surface stress and then the formation of multilayer islands and the pools of
vacancies. On the other hand, the random exchange also suppress the nucleation
preferential sites generated by Co atoms at Cu steps, responsible of the step
decoration.Comment: 4 pages, latex, 2 figures embedded in the tex
Interplay between magnetic anisotropy and interlayer coupling in nanosecond magnetization reversal of spin-valve trilayers
The influence of magnetic anisotropy on nanosecond magnetization reversal in
coupled FeNi/Cu/Co trilayers was studied using a photoelectron emission
microscope combined with x-ray magnetic circular dicroism. In quasi-isotropic
samples the reversal of the soft FeNi layer is determined by domain wall
pinning that leads to the formation of small and irregular domains. In samples
with uniaxial magnetic anisotropy, the domains are larger and the influence of
local interlayer coupling dominates the domain structure and the reversal of
the FeNi layer
Influence of topography and Co domain walls on the magnetization reversal of the FeNi layer in FeNi/AlO/Co magnetic tunnel junctions
We have studied the magnetization reversal dynamics of FeNi/AlO/Co
magnetic tunnel junctions deposited on step-bunched Si substrates using
magneto-optical Kerr effect and time-resolved x-ray photoelectron emission
microscopy combined with x-ray magnetic circular dichroism (XMCD-PEEM).
Different reversal mechanisms have been found depending on the substrate miscut
angle. Larger terraces (smaller miscut angles) lead to a higher nucleation
density and stronger domain wall pinning. The width of domain walls with
respect to the size of the terraces seems to play an important role in the
reversal. We used the element selectivity of XMCD-PEEM to reveal the strong
influence of the stray field of domain walls in the hard magnetic layer on the
magnetic switching of the soft magnetic layer.Comment: 8 Pages, 7 Figure
Recommended from our members
Protein Microarrays--Without a Trace
Many experimental approaches in biology and biophysics, as well as applications in diagnosis and drug discovery, require proteins to be immobilized on solid supports. Protein microarrays, for example, provide a high-throughput format to study biomolecular interactions. The technique employed for protein immobilization is a key to the success of these applications. Recent biochemical developments are allowing, for the first time, the selective and traceless immobilization of proteins generated by cell-free systems without the need for purification and/or reconcentration prior to the immobilization step
Recommended from our members
Development of a Chemoenzymatic-like and Photoswitchable Method for the High-Throughput creation of Protein Microarrays. Application to the Analysis of the Protein/Protein Interactions Involved in the YOP Virulon from Yersinia pestis.
Protein arrays are ideal tools for the rapid analysis of whole proteomes as well as for the development of reliable and cheap biosensors. The objective of this proposal is to develop a new ligand assisted ligation method based in the naturally occurring protein trans-splicing process. This method has been used for the generation of spatially addressable arrays of multiple protein components by standard micro-lithographic techniques. Key to our approach is the use of the protein trans-splicing process. This naturally occurring process allows the development of a truly generic and highly efficient method for the covalent attachment of proteins through its C-terminus to any solid support. This technology has been used for the creation of protein chips containing several virulence factors from the human pathogen Y. pestis
Recommended from our members
New developments for the site-specific attachment of protein to surfaces
Protein immobilization on surfaces is of great importance in numerous applications in biology and biophysics. The key for the success of all these applications relies on the immobilization technique employed to attach the protein to the corresponding surface. Protein immobilization can be based on covalent or noncovalent interaction of the molecule with the surface. Noncovalent interactions include hydrophobic interactions, hydrogen bonding, van der Waals forces, electrostatic forces, or physical adsorption. However, since these interactions are weak, the molecules can get denatured or dislodged, thus causing loss of signal. They also result in random attachment of the protein to the surface. Site-specific covalent attachment of proteins onto surfaces, on the other hand, leads to molecules being arranged in a definite, orderly fashion and uses spacers and linkers to help minimize steric hindrances between the protein surface. This work reviews in detail some of the methods most commonly used as well as the latest developments for the site-specific covalent attachment of protein to solid surfaces
Recommended from our members
Developing New Tools for the in vivo Generation/Screening of Cyclic Peptide Libraries. A New Combinatorial Approach for the Detection of Bacterial Toxin Inhibitors
A new combinatorial approach for the biosynthesis and screening of small drug-like toxin inhibitors inside living cells is presented. This approach has been initially used as proof of principle for finding inhibitors against the LF factor from Bacillus anthracis. Key to our ''living combinatorial'' approach is the use of a living cell as a micro-chemical factory for both synthesis and screening of potential inhibitors for a given molecular recognition event (see Scheme 1). This powerful technique posses the advantage that both processes synthesis and screening happen inside the cell thus accelerating the whole screening/selection process
- …