7 research outputs found

    4to. Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad. Memoria académica

    Get PDF
    Este volumen acoge la memoria académica de la Cuarta edición del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad, CITIS 2017, desarrollado entre el 29 de noviembre y el 1 de diciembre de 2017 y organizado por la Universidad Politécnica Salesiana (UPS) en su sede de Guayaquil. El Congreso ofreció un espacio para la presentación, difusión e intercambio de importantes investigaciones nacionales e internacionales ante la comunidad universitaria que se dio cita en el encuentro. El uso de herramientas tecnológicas para la gestión de los trabajos de investigación como la plataforma Open Conference Systems y la web de presentación del Congreso http://citis.blog.ups.edu.ec/, hicieron de CITIS 2017 un verdadero referente entre los congresos que se desarrollaron en el país. La preocupación de nuestra Universidad, de presentar espacios que ayuden a generar nuevos y mejores cambios en la dimensión humana y social de nuestro entorno, hace que se persiga en cada edición del evento la presentación de trabajos con calidad creciente en cuanto a su producción científica. Quienes estuvimos al frente de la organización, dejamos plasmado en estas memorias académicas el intenso y prolífico trabajo de los días de realización del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad al alcance de todos y todas

    Implementation of a Parallel Algorithm of Image Segmentation Based on Region Growing

    Full text link
    In computer vision and image processing, image segmentation remains a relevant research area that contains many partially answered research questions. One of the fields of most significant interest in Digital Image Processing corresponds to segmentation, a process that breaks down an image into its different components that make it up. A technique widely used in the literature is called Region Growing, this technique makes the identification of textures, through the use of characteristic and particular vectors. However, the level of its computational complexity is high. The traditional methods of Region growing are based on the comparison of grey levels of neighbouring pixels, and usually, fail when the region to be segmented contains intensities similar to adjacent regions. However, if a broad tolerance is indicated in its thresholds, the detected limits will exceed the region to identify; on the contrary, if the threshold tolerance decreases too much, the identified region will be less than the desired one. In the analysis of textures, multiple scenes can be seen as the composition of different textures. The visual texture refers to the impression of roughness or smoothness that some surfaces created by the variations of tones or repetition of visual patterns therein. The texture analysis techniques are based on the assignment of one or several parameters indicating the characteristics of the texture present to each region of the image. This paper shows how a parallel algorithm was implemented to solve open problems in the area of image segmentation research. Region growing is an advanced approach to image segmentation in which neighbouring pixels are examined one by one and added to an appropriate region class if no border is detected. This process is iterative for each pixel within the boundary of the region. If adjacent regions are found, a region fusion algorithm is used in which weak edges dissolve, and firm edges remain intact, this requires a lot of processing time on a computer to make parallel implementation possibl

    H2A.Z overexpression suppresses senescence and chemosensitivity in pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most intractable and devastating malignant tumors. Epigenetic modifications such as DNA methylation and histone modification regulate tumor initiation and progression. However, the contribution of histone variants in PDAC is unknown. Here, we demonstrated that the histone variant H2A.Z is highly expressed in PDAC cell lines and PDAC patients and that its overexpression correlates with poor prognosis. Moreover, all three H2A.Z isoforms (H2A.Z.1, H2A.Z.2.1, and H2A.Z.2.2) are highly expressed in PDAC cell lines and PDAC patients. Knockdown of these H2A.Z isoforms in PDAC cell lines induces a senescent phenotype, cell cycle arrest in phase G2/M, increased expression of cyclin-dependent kinase inhibitor CDKN2A/p16, SA-β-galactosidase activity and interleukin 8 production. Transcriptome analysis of H2A.Z-depleted PDAC cells showed altered gene expression in fatty acid biosynthesis pathways and those that regulate cell cycle and DNA damage repair. Importantly, depletion of H2A.Z isoforms reduces the tumor size in a mouse xenograft model in vivo and sensitizes PDAC cells to gemcitabine. Overexpression of H2A.Z.1 and H2A.Z.2.1 more than H2A.Z.2.2 partially restores the oncogenic phenotype. Therefore, our data suggest that overexpression of H2A.Z isoforms enables cells to overcome the oncoprotective barrier associated with senescence, favoring PDAC tumor grow and chemoresistance. These results make H2A.Z a potential candidate as a diagnostic biomarker and therapeutic target for PDAC
    corecore