2,803 research outputs found

    Dynamics of Spreading of Small Droplets of Chainlike Molecules on Surfaces

    Full text link
    Dynamics of spreading of small droplets on surfaces has been studied by the molecular dynamics method. Simulations have been performed for mixtures of solvent and dimer, and solvent and tetramer droplets. For solvent particles and dimers, layering occurs leading to stepped droplet shapes. For tetramers such shapes occur for relatively deep and strong surface potentials only. For wider and more shallow potentials, more rapid spreading and rounded droplet shapes occur. These results are in accordance with experimental data on small non - volatile polymer droplets. PACS numbers: 68.10Gw, 05.70.Ln, 61.20.Ja, 68.45GdComment: to appear in Europhys. Letters (1994), Latex, 12 page

    Molecular ordering of precursor films during spreading of tiny liquid droplets

    Full text link
    In this work we address a novel feature of spreading dynamics of tiny liquid droplets on solid surfaces, namely the case where the ends of the molecules feel different interactions to the surface. We consider a simple model of dimers and short chain--like molecules which cannot form chemical bonds with the surface. We study the spreading dynamics by Molecular Dynamics techniques. In particular, we examine the microscopic structure of the time--dependent precursor film and find that in some cases it can exhibit a high degree of local order. This order persists even for flexible chains. Our results suggest the possibility of extracting information about molecular interactions from the structure of the precursor film.Comment: 4 pages, revtex, no figures, complete file available from ftp://rock.helsinki.fi/pub/preprints/tft/ or at http://www.physics.helsinki.fi/tft/tft_preprints.html (to appear in Phys. Rev. E Rapid Comm.

    Grazing-angle scattering of electromagnetic waves in gratings with varying mean parameters: grating eigenmodes

    Get PDF
    A highly unusual pattern of strong multiple resonances for bulk electromagnetic waves is predicted and analysed numerically in thick periodic holographic gratings in a slab with the mean permittivity that is larger than that of the surrounding media. This pattern is shown to exist in the geometry of grazing-angle scattering (GAS), that is when the scattered wave (+1 diffracted order) in the slab propagates almost parallel to the slab (grating) boundaries. The predicted resonances are demonstrated to be unrelated to resonant generation of the conventional guided modes of the slab. Their physical explanation is associated with resonant generation of a completely new type of eigenmodes in a thick slab with a periodic grating. These new slab eigenmodes are generically related to the grating; they do not exist if the grating amplitude is zero. The field structure of these eigenmodes and their dependence on structural and wave parameters is analysed. The results are extended to the case of GAS of guided modes in a slab with a periodic groove array of small corrugation amplitude and small variations in the mean thickness of the slab at the array boundaries.Comment: 16 pages, 6 figure

    Dynamics of Spreading of Chainlike Molecules with Asymmetric Surface Interactions

    Full text link
    In this work we study the spreading dynamics of tiny liquid droplets on solid surfaces in the case where the ends of the molecules feel different interactions with respect to the surface. We consider a simple model of dimers and short chainlike molecules that cannot form chemical bonds with the surface. We use constant temperature Molecular Dynamics techniques to examine in detail the microscopic structure of the time dependent precursor film. We find that in some cases it can exhibit a high degree of local order that can persist even for flexible chains. Our model also reproduces the experimentally observed early and late-time spreading regimes where the radius of the film grows proportional to the square root of time. The ratios of the associated transport coefficients are in good overall agreement with experiments. Our density profiles are also in good agreement with measurements on the spreading of molecules on hydrophobic surfaces.Comment: 12 pages, LaTeX with APS macros, 21 figures available by contacting [email protected], to appear in Phys. Rev.

    Optical measurement of torque exerted on an elongated object by a non-circular laser beam

    Get PDF
    We have developed a scheme to measure the optical torque, exerted by a laser beam on a phase object, by measuring the orbital angular momentum of the transmitted beam. The experiment is a macroscopic simulation of a situation in optical tweezers, as orbital angular momentum has been widely used to apply torque to microscopic objects. A hologram designed to generate LG02 modes and a CCD camera are used to detect the orbital component of the beam. Experimental results agree with theoretical numerical calculations, and the strength of the orbital component suggest its usefulness in optical tweezers for micromanipulation.Comment: 6 pages, 7 figures, v2: minor typographical correction

    On the connected component of compact composition operators on the Hardy space

    Get PDF
    We show that there exist non-compact composition operators in the connected component of the compact ones on the classical Hardy space H2H^2 on the unit disc. This answers a question posed by Shapiro and Sundberg in 1990. We also establish an improved version of a theorem of MacCluer, giving a lower bound for the essential norm of a difference of composition operators in terms of the angular derivatives of their symbols. As a main tool we use Aleksandrov-Clark measures.Comment: 16 page
    • …
    corecore