13 research outputs found

    Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae)

    Get PDF
    Many temperate insects encounter temperatures low enough to freeze their body fluids. Remarkably, some insects are freeze-tolerant, surviving this internal ice formation. However, the mechanisms underlying freeze tolerance are not well-understood, in part due to a lack of tractable model organisms. We describe a novel laboratory model to study insect freeze tolerance, the spring field cricket Gryllus veletis (Orthopera: Gryllidae). Following acclimation to six weeks of decreasing temperature and photoperiod, G. veletis become freeze-tolerant, similar to those exposed to natural autumn conditions in London, Ontario, Canada. Acclimated crickets suppress their metabolic rate by c. 33%, and survive freezing for up to one week at -8°C, and to temperatures as low as -12°C. Freeze-tolerant G. veletis protect fat body cells from freeze injury in vivo, and fat body tissue from freeze-tolerant cricket survives brief freeze treatments when frozen ex vivo. Freeze-tolerant crickets freeze at c. -6°C, which may be initiated by accumulation of ice-nucleating agents in hemolymph or gut tissue. We hypothesize that control of ice formation facilitates freeze tolerance, but initiating ice formation at high subzero temperatures does not confer freeze tolerance on freeze-intolerant nymphs. Acclimation increases hemolymph osmolality from c. 400 to c. 650 mOsm, which may facilitate freeze tolerance by reducing ice content. Hemolymph ion concentrations do not change with acclimation, and we therefore predict that freeze-tolerant G. veletis elevate hemolymph osmolality by accumulating other molecules. Gryllus veletis is easily reared and manipulated in a controlled laboratory environment, and is therefore a suitable candidate for further investigating the mechanisms underlying freeze tolerance

    Waste processing facility location problem by stochastic programming: Models and solutions

    Get PDF
    The paper deals with the so-called waste processing facility location problem (FLP), which asks for establishing a set of operational waste processing units, optimal against the total expected cost. We minimize the waste management (WM) expenditure of the waste producers, which is derived from the related waste processing, transportation, and investment costs. We use a stochastic programming approach in recognition of the inherent uncertainties in this area. Two relevant models are presented and discussed in the paper. Initially, we extend the common transportation network flow model with on-and-off waste-processing capacities in selected nodes, representing the facility location. Subsequently, we model the randomly-varying production of waste by a scenario-based two-stage stochastic integer linear program. Finally, we employ selected pricing ideas from revenue management to model the behavior of the waste producers, who we assume to be environmentally friendly. The modeling ideas are illustrated on an example of limited size solved in GAMS. Computations on larger instances were realized with traditional and heuristic algorithms, implemented within MATLAB. © Springer Nature Switzerland AG 2019

    MEE (Materials Engineering for Electronics) - Aim, Tools and Perspectives

    No full text
    New approach to solidification processes based on a combination  of mechanical vibrations and on specially introduced magneto-hydrodynamic forces is illustrated on GaSb grown from Ga and Sb solutions. Process is accelerated approximately 20-times compared with "classical" Travelling heater method - solution growth. Up to now, though ingots possess mosaic texture, their transport properties: μH = 3.800 cm2/Vs, p = 1.7 . 1017 at 77 K are slightly better than published results. A schematic arrangement of the growth apparatus for a modified travelling heater method, and of the growth conditions are given. A simple calculation of levitation phenomenon being generated by a controlled MHD forces are presented. There is brought a brief analyses of this phenomenon for an application on the above mentioned processes. Some experimentation attempts are added. Possible perspectives inhering in this peculiar process can also inspire young investigators/scientists

    Antioxidants and vitamins in clinical conditions,”

    No full text
    Summary Various reactive oxygen species (ROS) may be produced from normal biochemical, essential metabolic processes or from external sources as exposure to a variety of agents presented in the environment. Lipids, proteins, carbohydrates and DNA are all capable of reacting with ROS and can be implicated in etiology of various human disorders (rheumatoid arthritis, reperfusion injury, atherosclerosis, lung diseases etc.). In the organism damage by ROS is counteracted with natural antioxidants (glutathione peroxidases, superoxide dismutases, catalase, glutathione, ubiquinol, uric acid, and essential minerals) and nutritional antioxidants from diet (i.e. vitamins E, C, carotenoids). Possible mechanisms of nutritional depletion and side effects of high intake are in the article described
    corecore