3,877 research outputs found

    Cutting load capacity of end mills with complex geometry

    Get PDF
    Cutting load capacity of cemented carbide end mills with high length-to-diameter ratios is determined from critical geometric and loading parameters, including a stress concentration factor (SCF) to account for serrated edges, which is determined by finite element analysis. Tensile strengths are characterised using a statistical Weibull analysis from 4-point bend tests of cemented carbide blanks of two different diameters. The approach is used to predict probability of survival for cutters under different loading conditions. Results are compared to measured failure cutting loads under service conditions as well as to those measured in static three point bend tests

    Coherent storage and manipulation of broadband photons via dynamically controlled Autler-Townes splitting

    Full text link
    The coherent control of light with matter, enabling storage and manipulation of optical signals, was revolutionized by electromagnetically induced transparency (EIT), which is a quantum interference effect. For strong electromagnetic fields that induce a wide transparency band, this quantum interference vanishes, giving rise to the well-known phenomenon of Autler-Townes splitting (ATS). To date, it is an open question whether ATS can be directly leveraged for coherent control as more than just a case of "bad" EIT. Here, we establish a protocol showing that dynamically controlled absorption of light in the ATS regime mediates coherent storage and manipulation that is inherently suitable for efficient broadband quantum memory and processing devices. We experimentally demonstrate this protocol by storing and manipulating nanoseconds-long optical pulses through a collective spin state of laser-cooled Rb atoms for up to a microsecond. Furthermore, we show that our approach substantially relaxes the technical requirements intrinsic to established memory schemes, rendering it suitable for broad range of platforms with applications to quantum information processing, high-precision spectroscopy, and metrology.Comment: 14 pages with 6 figures; 3 pages supplementary info with 2 supplementary figure

    Single-photon-level light storage in cold atoms using the Autler-Townes splitting protocol

    Full text link
    Broadband spin-photon interfaces for long-lived storage of photonic quantum states are key elements for quantum information technologies. Yet, reliable operation of such memories in the quantum regime is challenging due to photonic noise arising from technical and/or fundamental limitations in the storage-and-recall processes controlled by strong electromagnetic fields. Here, we experimentally implement a single-photon-level spin-wave memory in a laser-cooled Rubidium gas, based on the recently proposed Autler-Townes splitting (ATS) protocol. We demonstrate storage of 20-ns-long laser pulses, each containing an average of 0.1 photons, for 200 ns with an efficiency of 12.5%12.5\% and signal-to-noise ratio above 30. Notably, the robustness of ATS spin-wave memory against motional dephasing allows for an all-spatial filtering of the control-field noise, yielding an ultra-low unconditional noise probability of 3.3×1043.3\times10^{-4}, without the complexity of spectral filtering. These results highlight that broadband ATS memory in ultracold atoms is a preeminent option for storing quantum light.Comment: 6 pages, 4 figure

    On Simplices with a Given Barycenter That Are Enclosed by the Standard Simplex

    Full text link
    We present an optimization model defined on the manifold of the set of stochastic matrices. Geometrically, the model is akin to identifying a maximum-volume nn-dimensional simplex that has a given barycenter and is enclosed by the nn-dimensional standard simplex. Maximizing the volume of a simplex is equivalent to maximizing the determinant of its corresponding matrix. In our model, we employ trace maximization as a linear alternative to determinant maximization. We identify the analytical form of a solution to this model. We prove the solution is optimal and present necessary and sufficient conditions for it to be the unique optimal solution. Additionally, we show the identified optimal solution is an inverse MM-matrix, and that its eigenvalues are the same as its diagonal entries. We demonstrate how the model and its solutions apply to the task of synthesizing conditional cumulative distribution functions (CDFs) that, in tandem with a given discrete marginal distribution, coherently preserve a given CDF

    A two-stage stochastic programming model for electric substation flood mitigation prior to an imminent hurricane

    Full text link
    We present a stochastic programming model for informing the deployment of temporary flood mitigation measures to protect electrical substations prior to an imminent and uncertain hurricane. The first stage captures the deployment of a fixed number of mitigation resources, and the second stage captures grid operation in response to a contingency. The primary objective is to minimize expected load shed. We develop methods for simulating flooding induced by extreme rainfall and construct two geographically realistic case studies, one based on Tropical Storm Imelda and the other on Hurricane Harvey. Applying our model to those case studies, we investigate the effect of the mitigation budget on the optimal objective value and solutions. Our results highlight the sensitivity of the optimal mitigation to the budget, a consequence of those decisions being discrete. We additionally assess the value of having better mitigation options and the spatial features of the optimal mitigation.Comment: 35 pages, 12 figure

    A Study of Inclusive Double-Pomeron-Exchange in p pbar -> p X pbar at root s = 630 GeV

    Full text link
    We report measurements of the inclusive reaction, p pbar -> p X pbar, in events where either or both the beam-like final-state baryons were detected in Roman-pot spectrometers and the central system was detected in the UA2 calorimeter. A Double-Pomeron-Exchange (DPE) analysis of these data and single diffractive data from the same experiment demonstrates that, for central masses of a few GeV, the extracted Pomeron-Pomeron total cross section exhibits an enhancement which exceeds factorization expectations by an order-of-magnitude. This may be a signature for glueball production. The enhancement is shown to be independent of uncertainties connected with possible non-universality of the Pomeron flux factor. Based on our analysis, we present DPE cross section predictions, for unit (1 mb) Pomeron-Pomeron total cross section, at the Tevatron, LHC and the 920 GeV fixed-target experiment, HERA-B.Comment: 52 pages, 27 Encapsulated Postscript figures, 3 Tables, LaTex, Revised version as it will appear in European Physics Journal

    Cross Section Measurements of Hard Diffraction at the SPS-Collider

    Full text link
    The UA8 experiment previously reported the observation of jets in diffractive events containing leading protons (``hard diffraction''), which was interpreted as evidence for the partonic structure of an exchanged Reggeon, believed to be the Pomeron . In the present Letter, we report the final UA8 hard-diffractive (jet) cross section results and their interpretation. After corrections, the fraction of single diffractive events with mass from 118 to 189 GeV that have two scattered partons, each with Et_jet > 8 GeV, is in the range 0.002 to 0.003 (depending on x_p). We determine the product, fK, of the fraction by which the Pomeron's momentum sum rule is violated and the normalization constant of the Pomeron-Flux-Factor of the proton. For a pure gluonic- or a pure qqbar-Pomeron , respectively: fK = 0.30 +- 0.05 +- 0.09) and (0.56 +- 0.09 +- 0.17) GeV^-2.Comment: 20 pages, 5 Encapsulated Postscript figures, LaTex, Final Version, Physics Letters B (in Pess 1998

    Two-stage models for flood mitigation of electrical substations

    Full text link
    We compare stochastic programming and robust optimization decision models for informing the deployment of temporary flood mitigation measures to protect electrical substations prior to an imminent and uncertain hurricane. In our models, the first stage captures the deployment of a fixed quantity of flood mitigation resources, and the second stage captures the operation of a potentially degraded power grid with the primary goal of minimizing load shed. To model grid operation, we introduce novel adaptations of the DC and LPAC power flow approximation models that feature relatively complete recourse by way of a blackout indicator variable and relaxed model of power generation. We apply our models to a pair of geographically realistic flooding case studies, one based on Hurricane Harvey and the other on Tropical Storm Imelda. We investigate the effect of the mitigation budget, the choice of power flow model, and the uncertainty perspective on the optimal mitigation strategy. Our results indicate the mitigation budget and uncertainty perspective are impactful whereas the choice of power flow model is of little to no consequence
    corecore