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Abstract
Cutting load capacity of cemented carbide end mills with high length-to-diameter ratios is determined
from critical geometric and loading parameters, including a stress concentration factor (SCF) to
account for serrated edges, which is determined by finite element analysis.  Tensile strengths are
characterised using a statistical Weibull analysis from 4-point bend tests of cemented carbide blanks
of two different diameters. The approach is used to predict probability of survival for cutters under
different loading conditions.  Results are compared to measured failure cutting loads under service
conditions as well as to those measured in static three point bend tests.
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1 INTRODUCTION
Milling is widely used in industry for machining a variety
of parts.  Productivity and part quality improvement in
milling using process modeling, monitoring and control
methods have been addressed in many studies.
Surface finish, tolerance integrity of the part, and
chatter stability are common constraints that have to
be considered in process improvement [1]. Tool
breakage can also become a limitation that is
particularly of importance for heavy roughing
operations. When the axial depth of cut and gauge
length (L) of the end mill are very large compared to
the diameter (D) (say L/D of over 8) bending stresses
in the tool can become extremely high causing shank
breakage. Such is the case in flank milling of gas
turbine engine compressors [2], which was the
application considered in this study.  In these cases,
the material removal rate (MRR) is significantly reduced
as a very small chip thickness, usually much smaller
than the allowable chip load for the given cutting edge,
is used to keep the cutting forces low.  Predicting the
breakage limit of end mills with complex geometry such
as taper ball end mills can be effective in eliminating
overloading and may also be used in process
optimization by analyzing the effect of various
geometric details on the stress, and thus increasing
MRR.  Tool breakage investigations have mainly
focused on edge chipping and breakage detection.
Determination of the stresses in milling cutters with
complex geometry is not straightforward due to the
complicated geometry these cutters can have. Taper
ball end mills have varying diameter, helix angle and
flute depth in the axial direction. Serrations that are
used on the roughing cutters to reduce forces,
increase stability and improve chip breakage further
complicate the geometry.

Assessment of tool breakage requires not only
knowledge of the state of stress but also a criteria for
evaluation of fracture. Point fracture criteria
appropriate for brittle materials, including maximum
stress and maximum strain criteria, are discussed by

Tagaki and Shaw [3]. Regardless of the criteria used,
however, point criteria, by themselves, cannot describe
the variability of measured strengths in brittle
materials.  An alternative to point failure criteria is the
use of fracture mechanics, where strength variability
can be attributed to the variation of flaw shapes and
sizes in the material. Linear elastic fracture mechanics
methods are appropriate, such that for a given crack
size and applied stress, the stress intensity factor, KI,
can be determined. KI, has been tabulated for many
different geometries or it can be found from the change
in compliance as was done by Shibasaka, et. al [4].
The fracture toughness is compared to a critical
fracture toughness, KIC, which must be determined
from testing.  For ceramic materials, the critical
fracture toughness can be found using microhardness
tests, either directly [5] or by using bend tests of
specimens in which the flaw was created using an
indenter [4]. Growth of cracks during fatigue loading
can also be considered using fracture mechanics by
determining a ∆KI  for the loading cycle and determining
the crack growth law, da/dN,  from which tool life could
be estimated.  However, because of the low fracture
toughness of many tool materials critical crack lengths
are correspondingly small. For example, KIC  has been
determined to be 13 MPa m1/2 for a  WC ceramic [5],
which results in a critical flaw size of < 0.1 mm at
stresses comparable to the tensile strength.  Such
small critical crack sizes make their detection and/or
monitoring extremely challenging.

Determination of tool stresses from known cutting
forces has been accomplished using both analytical
expressions [6] and finite element methods [7-10].
Although finite element analysis has been
demonstrated to provide reliable determination of
stresses, the complex 3D geometry of the tapered mill
cutter makes their modeling very time consuming,
particularly when a wide variety of cutter geometries is
employed as in a large manufacturing organization.
Thus a more robust approach is desired.
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2 STRESSES IN THE CUTTER

2.1 Milling Forces
Several cutting force models used in the analysis of
the milling process are discussed by Budak [2]. In this
study, however, the focus is to determine the maximum
load capacity of an end mill and therefore milling forces
are assumed to be known. The force is taken to be
uniform along the length, which is an acceptable
assumption for cases where the maximum stress is
above the cutting depth.   

2.2 Stress Analysis
The tapered mill cutter is idealized as a cantilever
beam of varying cross-section, defined by an
equivalent radius, using an approach similar to that by
Kops and Vo [11] for determining end mill deflection.
The analysis is based on Euler-Bernoulli beam theory,
with normal stresses much greater than shear stress,
such that the normal stress is the principal stress.
The idealized cutter geometry is shown in Figure 1,
where  Rb is the ball radius of cutter, W  is the
distributed load, φ is the taper angle, Rs is the shank
radius, d is the cutting depth, H is the flute length, L is
the length of cutter, and fd is the flute depth.

Figure 1: Loading conditions of the cutters.

The cross sections along the tapered length of the 3-
flute and the 4-flute cutters are as shown in Figure 2.

Figure 2: Cross section of the 4-flute and 3-flute
cutters.

To ease computation of the total moment of inertia, the
cross sections were divided into regions depicted in
Figure 2. Each region is bounded by an arc of radius r
and center (x, y), and the lines shown. It is obvious
that by computing the inertia matrix of one region the
other regions can be obtained by appropriate
transformation. From Figure 3 using the cosine law we
can define an equivalent radius Req for region I in terms
of r and the position vector of the center of the arc
respect to the x- and y-axes as

Req (θ )3− Flutes = p cos(θ +π / 3) + f (θ )

Req (θ )4 −Flutes = psin(θ )+ g(θ )
            (1)

where

f (θ ) = p2 cos2 (θ + π / 3)+ (r2 − p2 )

g(θ) = p2 sin2(θ) + (r2 − p2)

Figure 3: (a) Region I of a 4-flute cutter; (b) Region I of
a 3-flute cutter.

Note that Eq. (1) defines the equivalent radius at the
end of the flute length . From the flute depth and the
shank radius the minimum equivalent radius along the
taper length is computed. Now using similar triangles
the equivalent radius can be expressed in terms of the
distance z along the flute length of the cutters as

R(z,θ) = Req (θ )+ (z − H ) tanφ             (2)

Knowing R(z,θ) the moment of inertia Mxx, Myy and Mxy

can be obtained as

Mxx(z)= ρ3 sin2 θdρdθ
A∫

Myy(z) = ρ3
cos

2 θdρdθ
A∫

Mxy(z) = ρ3 sinθ cosθdρdθ
A∫

                      (3)

where 0 ≥ ρ < R(z,θ) and 0 ≥ θ < π/2 for 4-flute cutters
and  0 ≥ θ < 2π/3 for 3-flute cutters.  To account for
the presence of the serrations on the cutter, finite
element analysis is used to determine stress
concentration factors. Several serration patterns were
considered with the SCF ranging from 2.04 to 2.21.
Knowing the stress concentration and the geometric
parameters shown in Fig. 1, the maximum stress along
the length of the cutter can be determined for a given
cutting depth and distributed loading intensity. Figure 4
shows the computed stress at the outside radius for a
4-flute cutter for three different cutting depths, with the
same total load of 10.4 kN.
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Figure 4: Variation of stress along the length of the
cutter for three cutting depths.



3 STRENGTH OF CEMENTED CARBIDE MATERIAL

3.1 Blank Tests
To determine the tensile strength of the carbide
material, equal span 4 pt. bend tests with a total span
of 254 mm were performed on circular cemented
carbide blanks with diameters of 12.5 mm (B12) and
25.4 mm (B25).  The blanks were WC-6% Co, with a
minimum Rockwell Hardness A of 92.8.  Ten blanks of
each size were tested. For the 12.5 mm diameter
specimens the mean failure stress was 2131 MPa with
a standard deviation of 503 MPa and for the 25 mm
specimens the mean failure stress and standard
deviation were 1262 MPa and 214 MPa, respectively.

3.2 Weibull analysis
Although there are a number of probablistic theories,
that proposed by Weibull is universally recognized. The
theory has been described as the ‘weak-link’ model
since it is the largest flaw within the volume that will
determine breaking strength.  As a result, the stress
distribution over the entire volume is considered and
the strength of the material decreases as volume
increases.  For an infinitesimal volume the risk of
rupture, R, depends only on stress.  Weibull postulated
that for a unit volume

R =
σ −σ u

σ 0

 
 
  

 
 

m

(4)

where  σ is the applied stress, σu is the stress below
which there is zero probability of failure, σ0 is a
characteristic strength analogous to the mean
strength, and m is the Weibull modulus, which
characterizes material variability.  The Weibull
parameters for a unit volume can be determined from
Eq. (4) and the results of the 4 pt. bend tests, by
plotting the double logarithm of the probability of
survival, S (V0), defined as exp (-R) vs. the log of the
failure stress.  The results are shown in Figure 5 for
the two blank diameters. To compare results or to use
the results to evaluate the strength of cutters, the
stress distribution over the volume must be
considered.  Thus the probability of survival is S(V) is
determined as

S V( ) = exp −
σ

σ 0
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The tensile stress distribution in the 4 pt. bend test is

σ r,θ,z( ) = σmax
r
a
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(6)

for 0 ≤ r ≤ a and –π/2 ≤ θ ≤ π/2.  For an equal
probability of survival, evaluat ing (6) for the two size
blanks gives the relationship

σ max( )1

σmax( )
2

=
a2

a1

 
 
  

 
 

2 / m

(7)

For a Weibull modulus of 5, the stress ratio for an
equal probability of survival for the two size blanks
would be 1.32, which explains to some degree the
difference in mean stress observed for the two size
blanks. However, differences in processing may also
be a factor.

log σmax

Figure 5: Determination of Weibull parameters from
blank tests.

4 APPLICATION TO MILL CUTTERS

4.1 Probability of Survival
To test the proposed stress analysis and failure model,
tapered mill cutters were tested to failure under both 3-
pt static bend testing as well as during cutting
conditions, where loads were recorded using a spindle-
mounted dynamometer. To determine the probability of
survival the stress distribution must be integrated over
the volume. The variation of stress shown in Figure 4,
is used for the longitudinal distribution where the
circumferential variation of stress in the cutters in
three-point bend is the same as that for the blanks.
The stress distibution is integrated numerically. It is
then possible to determine the max stress in the
cutter, (σmax)c3 that has an equal probability of survival
as a blank in 4 pt. bend with maximum stress (σmax)B.

σmax( )
c3

= σ max( )
B

.00328
m +3( )

m +1( ) m +2( ) LBaB
2 

  
 

  

1 / m

(8)

where LB and aB are in mm. Using the Weibull
parameters derived from the 25.4 mm blanks, the
above expression reduces to

σmax( )
c3

=1.73 σ max( )
B

            (9)

Due to rotation, the stress distribution of cutters in
service is independent of θ, thus a much greater
volume of material is subjected to tensile stress.  As a
result, for a cutter in service the maximum stress,
(σmax)cs with an equal probability of survival as that of a
cutter in 3-pt bend, (σmax)c3 is

σmax( )
cs

= .724σ max( )
c3

          (10)

Using (9) and (10) the maximum stress for a cutter of
arbitrary size in service having an equal probability of
survival as the 25 mm blank under 4 pt bend is

σmax( )
cs

=1.25
87.63

H
 
 

 
 

1 / m 9.53
Rs

 
 
  

 
 

2 / m

σ max( )
B

           (11)

where H and Rs are in mm.  Clearly caution should be
used in extrapolating to cutters of sizes considerably
different than those considered here.



SPEC. Flutes Rb (mm) φ (deg.) Rs (mm) H (mm) L (mm) σmax

(MPa)
S (%)

C3-00 3 3.18 8 9.53 87.6 206 1517 96.3
C3-01 3 3.18 8 9.53 87.6 210 1586 95.3
C3-02 3 3.18 8 9.53 79.8 210 1559 96.1
C3-03 3 3.18 8 9.53 95.0 224 1117 99.3
C3-04 4 5.59 7 9.53 74.9 184 3034 19.8
C3-05 4 5.59 4 9.53 100. 214 786 99.8
C3-06 4 5.59 4 9.53 100. 230 1310 98.1
C3-07 4 5.59 4 9.53 74.9 190 1683 94.4
C3-08 4 5.59 7 9.53 65.0 195 3469 4.93
C3-09 4 5.59 4 9.53 100. 227 1897 86.0

Table 1:  Results of cutter 3 pt. bend tests

SPEC. Flutes Rb (mm) φ (deg.) Rs (mm) H (mm) L (mm) W
(N/mm)

d (mm) σmax

(MPa)
S (%)

CS-00 4 6.35 6 9.53 66.7 102 537 12.7 2551 3.25
CS-01 4 6.35 6 9.53 66.7 95 137 47.0 1517 83.6
CS-02 4 6.35 6 9.53 66.7 95 150 66.0 1759 66.0
CS-03 4 5.59 9 11.1 71.0 127 627 12.7 2482 1.45
CS-04 4 5.59 9 11.1 71.0 127 261 47.0 1862 43.7
CS-05 4 5.59 9 11.1 71.0 127 93 66.0 655 99.7
CS-06 4 4.6 8 9.53 75.2 102 233 12.7 3172 <.01
CS-07 4 4.6 8 9.53 75.2 102 57 47.0 1034 97.7
CS-08 4 4.6 8 9.53 75.2 102 84 66.0 1517 81.7
CS-09 3 3.18 8 7.94 70.6 170 157 12.7 1172 97.0
CS-10 3 3.18 8 7.94 70.6 170 96 47.0 1174 96.9
CS-11 3 3.18 8 7.94 70.6 170 45 66.0 586 99.9
CS-12 3 3.18 10 7.94 50.2 173 137 12.7 538 99.9
CS-13 3 3.18 10 7.94 50.2 170 150 66.0 1449 93.0

Table 2:  Results of tests on cutters in service
5 RESULTS AND CONCLUSION
The calculated stress and resulting probability of
survival are shown in Tables 1 and 2 for cutters in
bend testing and in service.  In bend testing, the mean
failure stress and standard deviation are 1796 MPa and
833 MPa, respectively and in service they are 1533
MPa and 782 MPa.  Comparing these results, the mean
stress for cutters in service is .85 times that in 3 pt.
bend, which is consistent with the result predicted by
Eq. (10).  The standard deviation for the two are
similar, but both are higher than that for either the B12
or B25 blanks, which may be expected to the greater
probability of flaws in cutters. The mean failure stress
for the cutters in service is 1.21 times that of the B25
blanks, which is remarkably close to that predicted by
Eq. (11).  Somewhat less satisfying is the number of
cutters having either a very high or very low probability
of survival, which is related to the large observed
standard deviation.  A practical remedy for which is to
use a somewhat smaller value of the Weibull
parameter, m, than that used in the analysis.  The
method can then be used to determine the probability
of survival for a cutter subjected to given loads.
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