6,674,520 research outputs found
Enumeration of self avoiding trails on a square lattice using a transfer matrix technique
We describe a new algebraic technique, utilising transfer matrices, for
enumerating self-avoiding lattice trails on the square lattice. We have
enumerated trails to 31 steps, and find increased evidence that trails are in
the self-avoiding walk universality class. Assuming that trails behave like , we find and .Comment: To be published in J. Phys. A:Math Gen. Pages: 16 Format: RevTe
An interface group for process components
We take a process component as a pair of an interface and a behaviour. We
study the composition of interacting process components in the setting of
process algebra. We formalize the interfaces of interacting process components
by means of an interface group. An interesting feature of the interface group
is that it allows for distinguishing between expectations and promises in
interfaces of process components. This distinction comes into play in case
components with both client and server behaviour are involved.Comment: 26 pages; section on non-associativity of component composition
added, examples adde
Self-passivation of vacancies in \alpha-PbO
We introduce a self-passivation of single lead (Pb) and oxygen (O) vacancies
in the \alpha-PbO compound through formation of a Pb-O vacancy pair. The
preferential mechanism for pair formation involves initial development of the
single Pb vacancy which, by weakening the covalent bonding, sets up the crystal
lattice for an appearance of the O vacancy. Binding of the Pb and O vacancies
occurs through the ionization interactions. Since no dangling bonds appear at
the Pb-O pair site, this defect has a minor effect on the electronic
properties. In such, vacancy self-passivation offers a practical way to improve
the transport properties in thermally grown PbO layers.Comment: 4 pages, 4 figure
Hydrodynamic simulations of correlation and scatter in galaxy cluster maps
The two dimensional structure of hot gas in galaxy clusters contains
information about the hydrodynamical state of the cluster, which can be used to
understand the origin of scatter in the thermodynamical properties of the gas,
and to improve the use of clusters to probe cosmology. Using a set of
hydrodynamical simulations, we provide a comparison between various maps
currently employed in the X-ray analysis of merging clusters and those cluster
maps anticipated from forthcoming observations of the thermal
Sunyaev-Zel'dovich effect. We show the following: 1) an X-ray pseudo-pressure,
defined as square root of the soft band X-ray image times the temperature map
is a good proxy for the SZ map; 2) we find that clumpiness is the main reason
for deviation between X-ray pseudo-pressure and SZ maps; 3) the level of
clumpiness can be well characterized by X-ray pseudo-entropy maps. 4) We
describe the frequency of deviation in various maps of clusters as a function
of the amplitude of the deviation. This enables both a comparison to
observations and a comparison to effects of introduction of complex physical
processes into simulation.Comment: 7 pages, A&A in pres
Temperature of a Decoherent Oscillator with Strong Coupling
The temperature of an oscillator coupled to the vacuum state of a heat bath
via ohmic coupling is non-zero, as measured by the reduced density matrix of
the oscillator. This paper shows that the actual temperature, as measured by a
thermometer is still zero (or in the thermal state of the bath, the temperature
of the bath). The decoherence temperature is due to "false-decoherence", with
the heat bath state being dragged along with the oscillator.Comment: 6 page
Temperature effects on material characteristics
Some of the physical properties of the main elements of interest in
high temperature technology are reviewed. Some general trends emerge
when these properties are viewed as a function of melting point, but there
are a few notable exceptions. Titanium, zirconium, niobium and tantalum
all have disappointingly low moduli; chromium is excellent in many ways,
but has a limited ductility at lower temperatures; molybdenum oxidises
catastrophically above about 700° C, and niobium suffers from severe
oxygen embrittlement. Beryllium and carbon (in the graphitic form) both
stand out as exceptional materials, both have very low densities, beryllium
a very high modulus but an unfortunately low ductility, while graphite has
a relatively low strength at the lower temperatures, although at temperatures
of 2000° C and above it emerges as a quite exceptional (and probably as the
ultimate) high temperature material. Some of the fundamental factors
involved in high temperature material development are examined, in the
light, particularly, of past progress with the nickel alloys. If a similar
progress can be achieved with other base elements then a considerable
margin still remains to be exploited. Protection from oxidation at high
temperatures is evidently a factor of major concern, not only with metals,
but with graphite also. Successful coatings are therefore of high importance and the questions they raise, such as bonding, differential thermal expansion,
and so on, represent aspects of an even wider class covered by the term
“composite structures". Such structures appear to offer the only serious
solution to many high temperature requirements, and their design,
construction and utilization has created a whole series of new exercises
in materials assessment. Matters have become so complex, that a very
radical and fundamental reassessment is required if we are to change, in
any very significant way, the wasteful and ad hoc methods which characterise
so much of present-day materials engineering
Tunable coupling in circuit quantum electrodynamics with a superconducting V-system
Recent progress in superconducting qubits has demonstrated the potential of
these devices for the future of quantum information processing. One desirable
feature for quantum computing is independent control of qubit interactions as
well as qubit energies. We demonstrate a new type of superconducting charge
qubit that has a V-shaped energy spectrum and uses quantum interference to
provide independent control over the qubit energy and dipole coupling to a
superconducting cavity. We demonstrate dynamic access to the strong coupling
regime by tuning the coupling strength from less than 200 kHz to more than 40
MHz. This tunable coupling can be used to protect the qubit from cavity-induced
relaxation and avoid unwanted qubit-qubit interactions in a multi-qubit system.Comment: 5 pages, 4 figure
Transmission protocols for instruction streams
Threads as considered in thread algebra model behaviours to be controlled by
some execution environment: upon each action performed by a thread, a reply
from its execution environment -- which takes the action as an instruction to
be processed -- determines how the thread proceeds. In this paper, we are
concerned with the case where the execution environment is remote: we describe
and analyse some transmission protocols for passing instructions from a thread
to a remote execution environment.Comment: 13 page
Programming an interpreter using molecular dynamics
PGA (ProGram Algebra) is an algebra of programs which concerns programs in
their simplest form: sequences of instructions. Molecular dynamics is a simple
model of computation developed in the setting of PGA, which bears on the use of
dynamic data structures in programming. We consider the programming of an
interpreter for a program notation that is close to existing assembly languages
using PGA with the primitives of molecular dynamics as basic instructions. It
happens that, although primarily meant for explaining programming language
features relating to the use of dynamic data structures, the collection of
primitives of molecular dynamics in itself is suited to our programming wants.Comment: 27 page
- …
