110 research outputs found
A low-dimensional spin S = 1/2 system at the quantum critical limit: Na2V2O7
We report the results of measurements of the dc-susceptibility and the
23Na-NMR response of Na2V2O7, a recently synthesized, non metallic low
dimensional spin system. Our results indicate that upon reducing the
temperature to below 100 K, the V^{4+} moments are gradually quenched, leaving
only one moment out of 9 active. The NMR data reveal a phase transition at very
low temperatures. With decreasing applied field H, the critical temperature
shifts towards T = 0 K, suggesting that Na2V2O7 may be regarded as an insulator
reaching a quantum critical point at H = 0.Comment: 4 pages, 5 figure
Unusual magnetic properties of the low-dimensional quantum magnet Na2V3O7
We report the results of low-temperature measurements of the specific heat
Cp(T), ac susceptibility chi(T) and 23Na nuclear magnetic resonance NMR of
Na2V3O7. At liquid He temperatures Cp(T)/T exhibits broad field-dependent
maxima, which shift to higher temperatures upon increasing the applied magnetic
field H. Below 1.5 K the ac magnetic susceptibility chi(T) follows a
Curie-Weiss law and exhibits a cusp at 0.086 mK which indicates a phase
transition at very low temperatures. These results support the previous
conjecture that Na2V3O7 is close to a quantum critical point (QCP) at mu_{0}H =
0 T. The entire data set, including results of measurements of the NMR
spin-lattice relaxation 1/T1(T), reveals a complex magnetic behavior at low
temperatures. We argue that it is due to a distribution of singlet-triplet
energy gaps of dimerized V moments. The dimerization process evolves over a
rather broad temperature range around and below 100 K. At the lowest
temperatures the magnetic properties are dominated by the response of only a
minor fraction of the V moments.Comment: 10.5 pages, 15 figures. Submitted to Phys. Rev.
Quenching of the Haldane gap in LiVSi2O6 and related compounds
Abstract.: We report results of susceptibility χ and 7Li NMR measurements on LiVSi2O6. The temperature dependence of the magnetic susceptibility χ(T) exhibits a broad maximum, typical for low-dimensional magnetic systems. Quantitatively it is in agreement with the expectation for an S=1 spin chain, represented by the structural arrangement of V ions. The NMR results indicate antiferromagnetic ordering below TN=24 K. The intra- and interchain coupling J and Jp for LiVSi2O6, and also for its sister compounds LiVGe2O6, NaVSi2O6 and NaVGe2O6, are obtained via a modified random phase approximation which takes into account results of quantum Monte Carlo calculations. While Jp is almost constant across the series, J varies by a factor of 5, decreasing with increasing lattice constant along the chain direction. The comparison between experimental and theoretical susceptibility data suggests the presence of an easy-axis magnetic anisotropy, which explains the formation of an energy gap in the magnetic excitation spectrum below TN, indicated by the variation of the NMR spin-lattice relaxation rate at T≪T
- …