9,218 research outputs found

    Differential cross-section for positronium formation in electron-atomic hydrogen collisions

    Get PDF
    The L=0 and 1 partial wave amplitudes obtained by a two-state coupled static approximation with correlation with the L greater than or equal to 2 Born amplitudes were combined to obtain the differential cross section for positronium formation in electron-atomic hydrogen collisions. For positron energies of 0.64 and 0.75 ryd, minima at the scattering angles of 57 deg and 51 deg are found. Total cross sections for positronium formation for low and intermediate impact energies are given. Measurement of the differential cross section for the process positron + helium yields positronium + helium ion for the detection of possible minima is suggested

    Angular distribution in two-photon double ionization of helium by intense attosecond soft X-ray pulses

    Full text link
    We investigate two-photon double ionization of helium by intense (1015W/cm210^{15} W/cm^2) ultrashort (≈300\approx 300 as) soft X-ray pulses (E = 91.6 eV). The time-dependent two-electron Schr\"odinger equation is solved using a coupled channel method. We show that for ultrashort pulses the angular distribution of ejected electrons depends on the pulse duration and provides novel insights into the role of electron correlations in the two-electron photoemission process. The angular distribution at energies near the ``independent electron'' peaks is close to dipolar while it acquires in the ``valley'' of correlated emission a significant quadrupolar component within a few hundred attoseconds.Comment: 17 pages, 6 fig

    Time Ordering in Kicked Qubits

    Full text link
    We examine time ordering effects in strongly, suddenly perturbed two-state quantum systems (kicked qubits) by comparing results with time ordering to results without time ordering. Simple analytic expressions are given for state occupation amplitudes and probabilities for singly and multiply kicked qubits. We investigate the limit of no time ordering, which can differ in different representations.Comment: 26 pages, 5 figure

    Assessment of the Fluorescence and Auger Data Base used in Plasma Modeling

    Get PDF
    We have investigated the accuracy of the 1s-vacancy fluorescence data base of Kaastra & Mewe (1993, A&AS, 97, 443) resulting from the initial atomic physics calculations and the subsequent scaling along isoelectronic sequences. In particular, we have focused on the relatively simple Be-like and F-like 1s-vacancy sequences. We find that the earlier atomic physics calculations for the oscillator strengths and autoionization rates of singly-charged B II and Ne II are in sufficient agreement with our present calculations. However, the substantial charge dependence of these quantities along each isoelectronic sequence, the incorrect configuration averaging used for B II, and the neglect of spin-orbit effects (which become important at high-Z) all cast doubt on the reliability of the Kaastra & Mewe data for application to plasma modeling.Comment: 19 pages with 6 figures, AAS TeX, accepted for publication in Ap

    Some characteristics of the solar flare event of February 16, 1984

    Get PDF
    In the morning of February 16, 1984 a solar cosmic ray event (GLE) was recorded by the world wide network of neutron monitors (NM). The counting rate vs. time profile of the Goose Bay NM (geog. lat. = 53.3 deg. N, deog. long. = 299.6 deg E) where the increase is expressed as percent of the counting rate of an equatorial sea level NM is presented. The Goose Bay NM was observed to have the maximum response to the solar particles. Its counting rate vs. time profile exhibits a rapid increase to maximum, has a large amplitude (approx. 170%) and decays rapidly to background in approx. 90 min. In Fig. 1 we also show the counting rate vs. time profile for the Tixie Bay NM (71.6 deg, 128.9 deg) which recorded an increase of only a few percent. Since the NMs at Goose Bay and Tixie Bay have asymptotic viewing directions approx. 180 deg apart in longitude, the anisotropy of the solar particle flux at Earth from these stations

    Multi-Modal Human-Machine Communication for Instructing Robot Grasping Tasks

    Full text link
    A major challenge for the realization of intelligent robots is to supply them with cognitive abilities in order to allow ordinary users to program them easily and intuitively. One way of such programming is teaching work tasks by interactive demonstration. To make this effective and convenient for the user, the machine must be capable to establish a common focus of attention and be able to use and integrate spoken instructions, visual perceptions, and non-verbal clues like gestural commands. We report progress in building a hybrid architecture that combines statistical methods, neural networks, and finite state machines into an integrated system for instructing grasping tasks by man-machine interaction. The system combines the GRAVIS-robot for visual attention and gestural instruction with an intelligent interface for speech recognition and linguistic interpretation, and an modality fusion module to allow multi-modal task-oriented man-machine communication with respect to dextrous robot manipulation of objects.Comment: 7 pages, 8 figure
    • 

    corecore