514 research outputs found

    Narrow 0\u3csup\u3e+\u3c/sup\u3e state in \u3csup\u3e20\u3c/sup\u3eNe and 0\u3csub\u3e6\u3c/sub\u3e\u3csup\u3e+\u3c/sup\u3e and 0\u3csub\u3e7\u3c/sub\u3e\u3csup\u3e+\u3c/sup\u3e rotational bands

    Get PDF
    A reanalysis of old data removes the (0+,2+) ambiguity for a very narrow state at Ex(20Ne)=11.55 MeV and gives a unique 0+ assignment. Such a 0+ state corresponds well to a predicted state at 11.494 MeV of unusually small reduced widths for decay to both the ground and first excited state of 16O. This new 0+ state is a better 06+ band head for the 8p-4h states at 15.159 MeV (6+) and 18.538 MeV (8+) than the currently accepted 0+ state at 12.44 MeV. Possible 2+ and 4+ members are considered. The higher 0+ level at Ex=12.44 starts a new 07+ band, and candidates for this band are critically discussed

    Suspension of a field-cooled BiPbSrCaCuO high- T

    Full text link

    Generation of angular-momentum-dominated electron beams from a photoinjector

    Get PDF
    Various projects under study require an angular-momentum-dominated electron beam generated by a photoinjector. Some of the proposals directly use the angular-momentum-dominated beams (e.g. electron cooling of heavy ions), while others require the beam to be transformed into a flat beam (e.g. possible electron injectors for light sources and linear colliders). In this paper, we report our experimental study of an angular-momentum-dominated beam produced in a photoinjector, addressing the dependencies of angular momentum on initial conditions. We also briefly discuss the removal of angular momentum. The results of the experiment, carried out at the Fermilab/NICADD Photoinjector Laboratory, are found to be in good agreement with theoretical and numerical models.Comment: 8 pages, 7 figures, submitted to Phys. Rev. ST Accel. Beam

    RF-thermal-structural-RF coupled analysis on the travelling wave disk-loaded accelerating structure

    Full text link
    Travelling wave (TW) disk-loaded accelerating structure is one of the key components in normal conducting (NC) linear accelerators, and has been studied for many years. In the design process, usually after the dimensions of each cell and the two couplers are finalized, the structure is fabricated and tuned, and then the whole structure characteristics can be measured by the vector network analyzer. Before the structure fabrication, the whole structure characteristics are less simulated limited by the available computer capability. In this paper, we described the method to do the RF-thermal-structural-RF coupled analysis on the TW disk-loaded structure with one single PC. In order to validate our method, we first analyzed and compared our RF simulation results on the 3m long BEPCII structure with the corresponding experimental results, which shows very good consistency. Finally, the RF-thermal-structure-RF coupled analysis results on the 1.35m long NSC KIPT linac accelerating structure are presented.Comment: 5 pages, 16 figures, Submitted to the Chinese Physics C (Formerly High Energy Physics and Nuclear Physics

    Predictive modeling of the current density and radiative recombination in blue polymer-based light-emitting diodes

    Get PDF
    The results of a combined experimental and modeling study of charge transport, recombination and light emission in blue organic light-emitting diodes (OLEDs) based on a polyfluorene derivative are presented. It is shown that the measured temperature-dependent current-voltage curves and the voltage-dependent current efficiency are accurately described using an OLED device model that is based on the separately determined unipolar electron and hole mobility functions. The recombination rate is calculated using the Langevin formula, including recombination of holes with free as well as trapped electrons. The light emission is obtained from the exciton formation profile using independently determined values of the exciton radiative decay probability, the average dipole orientation, and assuming a fraction of singlet excitons ¿S¿¿ = ¿(22±3)%, close to the quantum-statistical value. No additional free parameter is used. This shows that predictive one-dimensional device modeling of OLEDs is feasible

    Beam Loss Studies for Rare Isotope Driver Linacs Final Report

    Get PDF
    The Fortran 90 RIAPMTQ/IMPACT code package is a pair of linked beam-dynamics simulation codes that have been developed for end-to-end computer simulations of multiple-charge-state heavy-ion linacs for future exotic-beam facilities. These codes have multiple charge-state capability, and include space-charge forces. The simulations can extend from the low-energy beam-transport line after an ECR ion source to the end of the linac. The work has been performed by a collaboration including LANL, LBNL, ANL, and MSU. The code RIAPMTQ simulates the linac front-end beam dynamics including the LEBT, RFQ, and MEBT. The code IMPACT simulates the beam dynamics of the main superconducting linac. The codes have been benchmarked for rms beam properties against previously existing codes at ANL and MSU. The codes allow high-statistics runs on parallel supercomputing platforms, particularly at NERSC at LBNL, for studies of beam losses. The codes also run on desktop PC computers for low-statistics work. The code package is described in more detail in a recent publication [1] in the Proceedings of PAC07 (2007 US Particle Accelerator Conference). In this report we describe the main activities for the FY07 beam-loss studies project using this code package
    • …
    corecore