1,203 research outputs found

    Nonlinear dynamics of self-sustained supersonic reaction waves: Fickett's detonation analogue

    Full text link
    The present study investigates the spatio-temporal variability in the dynamics of self-sustained supersonic reaction waves propagating through an excitable medium. The model is an extension of Fickett's detonation model with a state dependent energy addition term. Stable and pulsating supersonic waves are predicted. With increasing sensitivity of the reaction rate, the reaction wave transits from steady propagation to stable limit cycles and eventually to chaos through the classical Feigenbaum route. The physical pulsation mechanism is explained by the coherence between internal wave motion and energy release. The results obtained clarify the physical origin of detonation wave instability in chemical detonations previously observed experimentally.Comment: 4 pages, 3 figure

    The Modulation of Multiple Phases Leading to the Modified KdV Equation

    Get PDF
    This paper seeks to derive the modified KdV (mKdV) equation using a novel approach from systems generated from abstract Lagrangians that possess a two-parameter symmetry group. The method to do uses a modified modulation approach, which results in the mKdV emerging with coefficients related to the conservation laws possessed by the original Lagrangian system. Alongside this, an adaptation of the method of Kuramoto is developed, providing a simpler mechanism to determine the coefficients of the nonlinear term. The theory is illustrated using two examples of physical interest, one in stratified hydrodynamics and another using a coupled Nonlinear Schr\"odinger model, to illustrate how the criterion for the mKdV equation to emerge may be assessed and its coefficients generated.Comment: 35 pages, 5 figure

    Self-Similar Blowup Solutions to the 2-Component Camassa-Holm Equations

    Full text link
    In this article, we study the self-similar solutions of the 2-component Camassa-Holm equations% \begin{equation} \left\{ \begin{array} [c]{c}% \rho_{t}+u\rho_{x}+\rho u_{x}=0 m_{t}+2u_{x}m+um_{x}+\sigma\rho\rho_{x}=0 \end{array} \right. \end{equation} with \begin{equation} m=u-\alpha^{2}u_{xx}. \end{equation} By the separation method, we can obtain a class of blowup or global solutions for σ=1\sigma=1 or −1-1. In particular, for the integrable system with σ=1\sigma=1, we have the global solutions:% \begin{equation} \left\{ \begin{array} [c]{c}% \rho(t,x)=\left\{ \begin{array} [c]{c}% \frac{f\left( \eta\right) }{a(3t)^{1/3}},\text{ for }\eta^{2}<\frac {\alpha^{2}}{\xi} 0,\text{ for }\eta^{2}\geq\frac{\alpha^{2}}{\xi}% \end{array} \right. ,u(t,x)=\frac{\overset{\cdot}{a}(3t)}{a(3t)}x \overset{\cdot\cdot}{a}(s)-\frac{\xi}{3a(s)^{1/3}}=0,\text{ }a(0)=a_{0}% >0,\text{ }\overset{\cdot}{a}(0)=a_{1} f(\eta)=\xi\sqrt{-\frac{1}{\xi}\eta^{2}+\left( \frac{\alpha}{\xi}\right) ^{2}}% \end{array} \right. \end{equation} where η=xa(s)1/3\eta=\frac{x}{a(s)^{1/3}} with s=3t;s=3t; ξ>0\xi>0 and α≥0\alpha\geq0 are arbitrary constants.\newline Our analytical solutions could provide concrete examples for testing the validation and stabilities of numerical methods for the systems.Comment: 5 more figures can be found in the corresponding journal paper (J. Math. Phys. 51, 093524 (2010) ). Key Words: 2-Component Camassa-Holm Equations, Shallow Water System, Analytical Solutions, Blowup, Global, Self-Similar, Separation Method, Construction of Solutions, Moving Boundar

    Resonant nonlinearity management for nonlinear-Schr\"{o}dinger solitons

    Full text link
    We consider effects of a periodic modulation of the nonlinearity coefficient on fundamental and higher-order solitons in the one-dimensional NLS equation, which is an issue of direct interest to Bose-Einstein condensates in the context of the Feshbach-resonance control, and fiber-optic telecommunications as concerns periodic compensation of the nonlinearity. We find from simulations, and explain by means of a straightforward analysis, that the response of a fundamental soliton to the weak perturbation is resonant, if the modulation frequency ω\omega is close to the intrinsic frequency of the soliton. For higher-order nn-solitons with n=2n=2 and 3, the response to an extremely weak perturbation is also resonant, if ω\omega is close to the corresponding intrinsic frequency. More importantly, a slightly stronger drive splits the 2- or 3-soliton, respectively, into a set of two or three moving fundamental solitons. The dependence of the threshold perturbation amplitude, necessary for the splitting, on ω\omega has a resonant character too. Amplitudes and velocities of the emerging fundamental solitons are accurately predicted, using exact and approximate conservation laws of the perturbed NLS equation.Comment: 14 pages, 6 figure

    Achievable Qubit Rates for Quantum Information Wires

    Full text link
    Suppose Alice and Bob have access to two separated regions, respectively, of a system of electrons moving in the presence of a regular one-dimensional lattice of binding atoms. We consider the problem of communicating as much quantum information, as measured by the qubit rate, through this quantum information wire as possible. We describe a protocol whereby Alice and Bob can achieve a qubit rate for these systems which is proportional to N^(-1/3) qubits per unit time, where N is the number of lattice sites. Our protocol also functions equally in the presence of interactions modelled via the t-J and Hubbard models

    Modeling M-Theory Vacua via Gauged S-Duality

    Full text link
    We construct a model of M-theory vacua using gauged S-duality and the Chan-Paton symmetries by introducing an infinite number of open string charges. In the Bechi-Rouet-Stora-Tyutin formalism, the local description of the gauged S-duality on its moduli space of vacua is fully determined by one physical state condition on the vacua. We introduce the string probe of the spatial degrees of freedom and define the increment of the cosmic time. The dimensionality of space-time and the gauge group of the low energy effective theory originate in the symmetries (with or without their breakdown) in our model. This modeling leads to the derived category formulation of the quantum mechanical world including gravity and to the concept of a non-linear potential of gauged and affinized S-duality which specifies the morphism structure of this derived category.Comment: 31 pages, version reflecting the erratum. arXiv admin note: substantial text overlap with arXiv:1102.460

    On the relationship between nonlinear equations integrable by the method of characteristics and equations associated with commuting vector fields

    Full text link
    It was shown recently that Frobenius reduction of the matrix fields reveals interesting relations among the nonlinear Partial Differential Equations (PDEs) integrable by the Inverse Spectral Transform Method (SS-integrable PDEs), linearizable by the Hoph-Cole substitution (CC-integrable PDEs) and integrable by the method of characteristics (ChCh-integrable PDEs). However, only two classes of SS-integrable PDEs have been involved: soliton equations like Korteweg-de Vries, Nonlinear Shr\"odinger, Kadomtsev-Petviashvili and Davey-Stewartson equations, and GL(N,\CC) Self-dual type PDEs, like Yang-Mills equation. In this paper we consider the simple five-dimensional nonlinear PDE from another class of SS-integrable PDEs, namely, scalar nonlinear PDE which is commutativity condition of the pair of vector fields. We show its origin from the (1+1)-dimensional hierarchy of ChCh-integrable PDEs after certain composition of Frobenius type and differential reductions imposed on the matrix fields. Matrix generalization of the above scalar nonlinear PDE will be derived as well.Comment: 14 pages, 1 figur

    Higher-order splitting algorithms for solving the nonlinear Schr\"odinger equation and their instabilities

    Get PDF
    Since the kinetic and the potential energy term of the real time nonlinear Schr\"odinger equation can each be solved exactly, the entire equation can be solved to any order via splitting algorithms. We verified the fourth-order convergence of some well known algorithms by solving the Gross-Pitaevskii equation numerically. All such splitting algorithms suffer from a latent numerical instability even when the total energy is very well conserved. A detail error analysis reveals that the noise, or elementary excitations of the nonlinear Schr\"odinger, obeys the Bogoliubov spectrum and the instability is due to the exponential growth of high wave number noises caused by the splitting process. For a continuum wave function, this instability is unavoidable no matter how small the time step. For a discrete wave function, the instability can be avoided only for \dt k_{max}^2{<\atop\sim}2 \pi, where kmax=π/Δxk_{max}=\pi/\Delta x.Comment: 10 pages, 8 figures, submitted to Phys. Rev.

    Exact Scattering States of Dirac-Born-Infeld Equation with Constant Background Fields

    Full text link
    Exact solutions to the Dirac-Born-Infeld equation, which describes scatterings of localized wave packets in the presence of constant background fields, are derived in this paper.Comment: 18 pages, latex, no figure

    An integrable shallow water equation with peaked solitons

    Full text link
    We derive a new completely integrable dispersive shallow water equation that is biHamiltonian and thus possesses an infinite number of conservation laws in involution. The equation is obtained by using an asymptotic expansion directly in the Hamiltonian for Euler's equations in the shallow water regime. The soliton solution for this equation has a limiting form that has a discontinuity in the first derivative at its peak.Comment: LaTeX file. Figure available from authors upon reques
    • …
    corecore