422 research outputs found

    Conductance Fluctuations, Weak Localization, and Shot Noise for a Ballistic Constriction in a Disordered Wire

    Get PDF
    This is a study of phase-coherent conduction through a ballistic point contact with disordered leads. The disorder imposes mesoscopic (sample-to-sample) fluctuations and weak-localization corrections on the conductance, and also leads to time-dependent fluctuations (shot noise) of the current. These effects are computed by means of a mapping onto an unconstricted conductor with a renormalized mean free path. The mapping holds both in the metallic and in the localized regime, and permits a solution for arbitrary ratio of mean free path to sample length. In the case of a single-channel quantum point contact, the mapping is onto a one-dimensional disordered chain, for which the complete distribution of the conductance is known. The theory is supported by numerical simulations. ***Submitted to Physical Review B.****Comment: 15 pages, REVTeX-3.0, 9 postscript figures appended as self-extracting archive, INLO-PUB-940309

    Tail States below the Thouless Gap in SNS junctions: Classical Fluctuations

    Full text link
    We study the tails of the density of states (DOS) in a diffusive superconductor-normal metal-superconductor (SNS) junction below the Thouless gap. We show that long-wave fluctuations of the concentration of impurities in the normal layer lead to the formation of subgap quasiparticle states, and calculate the associated subgap DOS in all effective dimensionalities. We compare the resulting tails with those arising from mesoscopic gap fluctuations, and determine the dimensionless parameters controlling which contribution dominates the subgap DOS. We observe that the two contributions are formally related to each other by a dimensional reduction.Comment: 6 pages, 1 figur

    Density of States and Energy Gap in Andreev Billiards

    Get PDF
    We present numerical results for the local density of states in semiclassical Andreev billiards. We show that the energy gap near the Fermi energy develops in a chaotic billiard. Using the same method no gap is found in similar square and circular billiards.Comment: 9 pages, 6 Postscript figure

    Quantum-to-classical crossover for Andreev billiards in a magnetic field

    Get PDF
    We extend the existing quasiclassical theory for the superconducting proximity effect in a chaotic quantum dot, to include a time-reversal-symmetry breaking magnetic field. Random-matrix theory (RMT) breaks down once the Ehrenfest time τE\tau_E becomes longer than the mean time τD\tau_D between Andreev reflections. As a consequence, the critical field at which the excitation gap closes drops below the RMT prediction as τE/τD\tau_E/\tau_D is increased. Our quasiclassical results are supported by comparison with a fully quantum mechanical simulation of a stroboscopic model (the Andreev kicked rotator).Comment: 11 pages, 10 figure

    A pseudointegrable Andreev billiard

    Full text link
    A circular Andreev billiard in a uniform magnetic field is studied. It is demonstrated that the classical dynamics is pseudointegrable in the same sense as for rational polygonal billiards. The relation to a specific polygon, the asymmetric barrier billiard, is discussed. Numerical evidence is presented indicating that the Poincare map is typically weak mixing on the invariant sets. This link between these different classes of dynamical systems throws some light on the proximity effect in chaotic Andreev billiards.Comment: 5 pages, 5 figures, to appear in PR

    Universal gap fluctuations in the superconductor proximity effect

    Get PDF
    Random-matrix theory is used to study the mesoscopic fluctuations of the excitation gap in a metal grain or quantum dot induced by the proximity to a superconductor. We propose that the probability distribution of the gap is a universal function in rescaled units. Our analytical prediction for the gap distribution agrees well with exact diagonalization of a model Hamiltonian

    Commensurability effects in Andreev antidot billiards

    Full text link
    An Andreev billiard was realized in an array of niobium filled antidots in a high-mobility InAs/AlGaSb heterostructure. Below the critical temperature T_C of the Nb dots we observe a strong reduction of the resistance around B=0 and a suppression of the commensurability peaks, which are usually found in antidot lattices. Both effects can be explained in a classical Kubo approach by considering the trajectories of charge carriers in the semiconductor, when Andreev reflection at the semiconductor-superconductor interface is included. For perfect Andreev reflection, we expect a complete suppression of the commensurability features, even though motion at finite B is chaotic.Comment: 4 pages, 4 figure

    Andreev Conductance of Chaotic and Integrable Quantum Dots

    Full text link
    We examine the voltage V and magnetic field B dependent Andreev conductance of a chaotic quantum dot coupled via point contacts to a normal metal and a superconductor. In the case where the contact to the superconductor dominates, we find that the conductance is consistent with the dot itself behaving as a superconductor-- it appears as though Andreev reflections are occurring locally at the interface between the normal lead and the dot. This is contrasted against the behaviour of an integrable dot, where for a similar strong coupling to the superconductor, no such effect is seen. The voltage dependence of the Andreev conductance thus provides an extremely pronounced quantum signature of the nature of the dot's classical dynamics. For the chaotic dot, we also study non-monotonic re-entrance effects which occur in both V and B.Comment: 13 pages, 9 figure

    Adiabatic quantization of Andreev levels

    Get PDF
    We identify the time TT between Andreev reflections as a classical adiabatic invariant in a ballistic chaotic cavity (Lyapunov exponent λ\lambda), coupled to a superconductor by an NN-mode point contact. Quantization of the adiabatically invariant torus in phase space gives a discrete set of periods TnT_{n}, which in turn generate a ladder of excited states ϵnm=(m+1/2)π/Tn\epsilon_{nm}=(m+1/2)\pi\hbar/T_{n}. The largest quantized period is the Ehrenfest time T0=λ1lnNT_{0}=\lambda^{-1}\ln N. Projection of the invariant torus onto the coordinate plane shows that the wave functions inside the cavity are squeezed to a transverse dimension W/NW/\sqrt{N}, much below the width WW of the point contact.Comment: 4 pages, 3 figure
    corecore