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Universal Gap Fluctuations in the Superconductor Proximity Effect
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Random-matrix theory is used to study the mesoscopic fluctuaüons of the excitation gap in a metal
grain or quantum dot induced by the proximity to a superconductor. We propose that the probability
distribution of the gap is a universal function in rescaled units. Our analytical prediction for the gap
distribution agrees well with exact diagonalization of a model Hamiltonian.
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A normal metal in the proximity of a superconductor
acquires characteristics that are typical of the supercon-
ducting state [1]. One of those characteristics is that the
quasiparticle density of states vanishes at the Fermi energy.
This superconductor proximity effect is most pronounced
in a confined geometry, such äs a thin metal film or metal
grain, or a semiconductor quantum dot. In that case, pro-
vided the scattering in the normal metal is chaotic, no ex-
citations exist within an energy gap Eg ~ h/r, where τ is
the typical time between collisions with the superconduc-
tor [2-7].

If the coupling to the superconductor is weak (äs for the
point contact coupling of Fig. 1), the functional form of
the density of states becomes independent of microscopic
properties of the normal metal, such äs the shape, dimen-
sionality, or mean free path. Weak coupling means that τ
is much bigger than the time rerg needed for ergodic ex-
ploration of the phase space in the normal region [8]. For a
point contact with W » l propagating modes at the Fermi
level ε = 0, the density of states has a square-root singu-
larity at the excitation gap [4],

l Ιέ - Ee

Pmfie = -J—rj-1 · (1)ττ-y Δ3

For a ballistic point contact and in the absence of a
magnetic field, Eg = cN8 is the mean-field energy gap
and Δ^ = c'N1/3d, where c = 0.048 and c' = 0.068
are numerical constants and δ is the mean level spac-
ing in the normal metal when it is decoupled from
the superconductor.

Equation (1) was obtained in a self-consistent diagram-
matic perturbation theory that uses τδ/Η ~ N~l äs a
small parameter. Such a mean-field theory provides a
smoothed density of states for which energies can be re-
solved only on the scale of the rate H/T ~ N δ between
collisions with the superconductor, not on smaller energy
scales, and is unable to deal with mesoscopic sample-to-
sample fluctuations of the excitation gap. Mesoscopic fluc-
tuations arise, e.g., upon varying the shape of a quantum
dot or the impurity configuration in a metal grain. The
lowest excited state EI fluctuates from sample to sample

PACS numbers: 73.23.-b, 74.50. +r, 74.80.Fp

around the mean-field value Eg, with a probability distri-
bution P (ε i). It is the purpose of this paper to go beyond
mean-field theory and to study the mesoscopic fluctuations
of the excitation spectrum close to Es. Our main result is
that the gap distribution .P(ει) is a universal function of
the rescaled energy χ = (ε\ — Eg)/Ag, in a broad ränge
\x\ <5C N2^, where Δ? is defmed in terrns of the mean-field
density of states (1). The Fermi level itself (ε = 0) falls
outside this ränge, which is why the universal gap distribu-
tion was not found in a recent related study [9]. Our main
findings are illustrated in Fig. 2. Note that the width of the

gap distribution Δ^ ~ Eg δ2/3 is parametrically smaller
than the gap size Eg but bigger than the mean level spacing
δ in the dot.

Also note that, in terms of the rescaled variable x,
the mean-field density pmf is already universal, pmf(x) =
π~ιχ1/2, though pmf is different from the true ensemble
averaged density of states (p); see Fig. 2. The difference
could arise, because the mean-field theory is unable to re-
solve the density of states on the energy scale Δ^.

We first consider the gap distribution in the absence of a
magnetic field and then include a time-reversal symmetry

FIG. l. A quantum dot (N) connected to a superconductor (S).
The voltages on the gates V\ and V2 change the shape of the dot.
Different values of the applied voltages create different samples
within the same ensemble.
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FIG 2 Mean-field and ensemble averaged density of states
pmf and ( p ) , together with the probabihty distribution P of
the excitation gap, äs a function of the rescaled energy χ =
(EI — Eg)/Ag These curves are the universal predictions of
the random-matrix theory

bieakmg magnetic field The startmg point of our calcula-
tion is the effective Hamiltonian for a quantum dot coupled
to a supeiconductor [10],

H
-H" ) (2)

Here H is an M X M Hermitian matnx lepresentmg the
Hamiltonian of the isolated quantum dot, and W is an
M X N matnx that descnbes the couplmg to the supercon-
ductoi via an N-mode point contact For a balhstic point
contact, Wmn = 77~1<5m„(M5)I/2 [11] The number M is
sent to mfinity at the end of the calculation [12] The ef-
fective Hamiltonian is a valid description of the low-lymg
excitations if the late N δ of collisions with the supercon-
ductoi (i e , the escape rate from the normal quantum dot)
is much smallei than the oider parameter Δ of the bulk su-
perconductor See Ref [10] for a microscopic denvaüon
of Eq (2) In the absence of a magnetic field, the matnx
H is symmetnc To descnbe an ensemble of chaotic quan-
tum dots (or disordered metal grams), we take H from the
Gaussian orthogonal ensemble (GOE) of random-matrix
theoiy [13],

?(//) oc exp -
77

482M
ΊτΗ' (3)

The choice of the distribution (3) is justified, smce both
charactenstic energy scales Eg and Δ Ä of our problem are
small compared to the inverse ergodic time Η/τ&τ& (This
is the Thouless energy of the isolated quantum dot) In this
case, vahdity of random-matrix theory for the Hamiltonian
H of the isolated quantum dot is known to be valid for
dots with diffusive [14] and balhstic chaotic [15] electron
dynamics

Calculation of the density of states of 3~C usmg peitur
bation theory in N"1 yields the result (1) discussed in the
intioduction Our problem is to go beyond peitui bation
theory and find the piobability distribution P(SI) of the
lowest positive eigenvalue ε ι of the Hamiltonian (2)

We have solved this problem numencally by exact diag-
onahzation of the effective Hamiltonian J-C Before pre-
sentmg these results, we fiist descnbe an entnely different
approach, which leads to an analytical piediction for the
gap distribution We invoke the umversahty hypothesis of
random-matrix theoiy, that the local spectial statistics of
a chaotic System depends only on the symmetiy propei-
ties of the Hamiltonian, and not on microscopic proper-
ües This umversahty hypothesis has been proven foi a
broad class of Hamiltomans in the bulk of the spectium
[16] but is beheved to be valid near the edge of the spec-
trum äs well A proof exists for so-called trace ensembles,
having T (H) « exp[—tr/(//)], with / an arbitrary poly-
nomial function [17]

The mean-field density of states near the edge can be
wntten in the form

l (B - bV
Pmf (ε) = — ,

a \ a l
ε > b (4)

According to the umversahty hypothesis, the spectral
statistics neai the edge, m rescaled variables (ε — b)/a,
depends only on the exponent p and on the symme-
try index β [β = 1 (2) in the piesence (absence) of
time-reversal symmetry] Genencally, p is either 1/2
(soft edge) or -1/2 (hard edge) For our pioblem, we
have β = l, p = 1/2, a = ττ2/3Δ^, b = Eg, cf Eq (1)
The conesponding gap distribution is given by [18]

(5)

FiW = exp(-i Γ [?(*') + (χ ~ x')q2(x')-]dx'}
\ J — c° /

(6)

The function q(x) is the solution of

q"(x) = -xq(x) + 2q\x), (7)

with asymptotic behavior q(x) —»· Ai(—x) äs χ —> — °o
[Ai(jt) bemg the Airy function]

The distribution (5) is shown m Fig 3 (solid cuive)
It is centered at a positive value of χ = (ε\ — E g ) / / \ g ,
meaning that the average gapsize (ει) is about A g bigger
than the mean-field gap Eg Foi small χ there is a tail of
the form

l
χ «C -l

(8)

Nonumveisal corrections to the distribution (5) become
impoitant for energy differences |ε — Eg\ S Eg, hence
for |jc| a 7V2/3 Smce the width of the gap distribution
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FIG 3 Probability distnbution of the rescaled excitation
gap χ = (EI — Eg)/Ag Data points follow from an exact
diagonahzation of 104 reahzations of the effective Hamiltoman
(2) for different values of M and W (Δ M = 400, N = 200,
D M = 600, N = 150, O M = 600, N = 80) The
solid curve is the universal prediction (5) of random-
matnx theory The mean of the data pomts has been adjusted
to fit the curve by applymg a horizontal offset, no other fit
Parameters are involved The inset shows the actual mean
(x) and root-mean-square value σ of the data for M/N = 4
for different values of N, together with the random-matnx
prediction for N —> °° These lesults are all m zero magnetic
field The dashed curve is the random-matnx theory prediction
(15) in the presence of a time-reveisal symmetry breakmg
magnetic field (ß = 2)

is of order unity in the variable x, the probabihty to find a
sample with an excitation gap m the nonuniversal regime
is exponentially small

In oidei to venfy our univeisahty hypothesis, we com-
paie Eq (5) with the results of an exact diagonahzation
of the Hamiltoman (2) As one can see in Fig 3, the
numencal data are in good agieement with the analytical
prediction The small deviations can be attnbuted to the
fimteness of N and M in the numencs

Let us now consider the effect of a weak magnetic field
on the gap distnbution In the effective Hamiltoman, the
piesence of a magnetic field is descnbed by replacing H
by [19]

H (a) = H + ιαΑ (9)

Heie A is an M X M leal antisymmetnc matnx, whose
off-diagonal elements have the same vanance äs those of
H The parameter a is propoitional to the magnetic field,

Μα2 =
Φο

h
(10)

where Φ is the magnetic flux thiough the quantum dot,
Φο = h/e is the flux quantum, and η is a nonuniversal
numencal constant [11] The case a = 0 conesponds
to the GOE that we consideied above, the case a = l
conesponds to the Gaussian unitaiy ensemble (GUE) of
fully bioken time leveisal symmeüy

The effect of a magnetic field on the density of states
in mean field theoiy is known [4] The square-ioot singu-
lanty (1) neai the gap still holds, but the magnitude of the
gap is teduced The critical flux Φα at which Z?? = 0 and
hence the proximity effect is fully suppressed is given by

Ma1 N => ΦΓ (Π)

This is a much largei flux than the flux Obuik at which the
spectral statistics m the bulk of the spectrum ciosses over
fiom GOE to GUE, which is given by [19]

Ma1

l => <i>bulk ~ Φι (12)

We now aigue that the charactenstic flux Φ6ι^ε for the
spectial statistics at the edge of the spectrum is intermedi
ate between <&c and Φι,υ^ We consider the effect of the
magnetic field on the lowest eigenvalue ε ι of 3~C to second
oider in perturbation theoiy,

JA = ι
- ε

A 0
0 -A

(13)

Since typically |{1|Λ|2)|2 ~ Μδ2/π2 and S2 - ε\ ~
Δ^, we see that the effect of level repulsion from the
neighbonng level 82 on the lowest level ει becomes
comparable to A g ~ Νι^δ if

Mo1 ~ N2/3

h
(14)

The terms m Eq (13) with j » l give a umfoim shift
of all low-lymg levels and, hence, do not affect the fluc
tuations Foi N » l the flux scale (14) for breakmg
time-reversal symmetry at the edge of the spectrum is
much smallei than the critical flux <J>C needed to sup-
piess the proximity effect Indeed, usmg N ~ Eg/8 we

find Φedge ~ &QTerg Eg δ1/6, which is much smaller than

Φο ~ Φοτ<χ& Eg Notice that the naive Substitution of δ
by A g in expression (12) for Φι,ιι^ would give the wrong
result for Φε£ι8β

To study numencally the ciossover m the gap fluctuation
statistics, N2^ <£. N has to be satisfied, which is difficult
The analytical prediction for fully broken time-ieversal
symmetry is [18]

(15)

(16)F2(;c) = exp - (x-x')q2(x')dx'

This curve is shown dashed in Fig 3 The tail for small x
is now given by

exp(-yW3/2), x « -1

The gap fluctuations are significantly leduced by
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TABLE I Charactenstic energy and magnetic flux scales for
the spectral statistics in the bulk and at the edge of the spectrum
and for the size of the gap

Energy scale Flux scale

Bulk statistics

Edge statistics

Gap size

apphcation of a magnetic field, see Fig 3 and Eqs (8)
and (17) The suppression of the fluctuations is a genenc
feature of the different level statistics for ensembles with
orthogonal and unitary symmetnes, the ensembles with
less symmetry (the unitary ensemble) havmg a more rigid
and, hence, less fluctuating spectrum [13]

To make contact with Ref [9] we bnefly discuss the im-
phcations of our lesults for the ensemble averaged density
of states (p(s)) in the subgap legime The tail of P(x)
for χ ·& — l is the same äs the tail of ( p ) , cf Fig 2 We
conclude that [20]

(18)exp(-— x

over a broad ränge Äg <3C Es — ε « Eg inside the mean-
field gap A different exponential decay (with a power of
2 instead of 3/2 m the exponent) was predicted lecently
by Beloborodov, Narozhny, and Alemei [9], foi the subgap
density of states of an ensemble of superconducting grams
in a weak magnetic field Since the mean-field density of
states in that problem is also of the form (1), the universal
GUE edge statistics should apply The reason that the uni-
versal decay (18) was not obtamed m Ref [9] is that then
theory applies to the nonumveisal energy ränge ε <Κ Eg

near the Fermi level To emphasize the significance of
the universal energy lange we note that the probabihty to
have the lowest energy level in that ränge is larger than
m the nonuniversal ränge by an exponentially large factor
* exp[(VA,)3/2]

In conclusion, we have argued that the proximity effect
m a mesoscopic System has a gap distnbution which
is universal once energy is measured in units of the
eneigy scale Ag <* (Eg5

2)1^ defined from the mean-field
density of states p (ε) = [(ε - Eg)/k3

g]
l/2/n This

universal distnbution is the same äs the distnbution of the
smallest eigenvalue of the Gaussian orthogonal or unitary
ensembles from random-matrix theory, depending on
whether time-reversal symmetry is broken or not We
have identified the magnetic field scale for breaking
time-reversal symmetry and venfied our lesults by exact
diagonahzation of an effective Hamiltoman Character-
istic energy and magnetic field scales aie summanzed in
Table I The umversahty of oui prediction should offei
ample opportumties foi experimental observation
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