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Universal Gap Fluctuations in the Superconductor Proximity Effect
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Random-matrix theory is used to study the mesoscopic fluctuations of the excitation gap in a metal
grain or quantum dot induced by the proximity to a superconductor. We propose that the probability
distribution of the gap is a universal function in rescaled units. Our analytical prediction for the gap
distribution agrees well with exact diagonalization of a model Hamiltonian.
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A normal metal in the proximity of a superconductor
acquires characteristics that are typical of the supercon-
ducting state [1]. One of those characteristics is that the
quasiparticle density of states vanishes at the Fermi energy.
This superconductor proximity effect is most pronounced
in a confined geometry, such as a thin metal film or metal
grain, or a semiconductor quantum dot. In that case, pro-
vided the scattering in the normal metal is chaotic, no ex-
citations exist within an energy gap E, ~ i/, where 7 is
the typical time between collisions with the superconduc-
tor [2-7].

If the coupling to the superconductor is weak (as for the
point contact coupling of Fig. 1), the functional form of
the density of states becomes independent of microscopic
properties of the normal metal, such as the shape, dimen-
sionality, or mean free path. Weak coupling means that 7
is much bigger than the time 7¢;, needed for ergodic ex-
ploration of the phase space in the normal region [8]. For a
point contact with N >> 1 propagating modes at the Fermi
level ¢ = 0, the density of states has a square-root singu-
larity at the excitation gap [4],
puile) = ~ |2 L 1)
T Ag
For a ballistic point contact and in the absence of a
magnetic field, E, = ¢N§ is the mean-field energy gap
and A, = ¢/N'/38, where ¢ = 0.048 and ¢’ = 0.068
are numerical constants and & is the mean level spac-
ing in the normal metal when it is decoupled from
the superconductor.

Equation (1) was obtained in a self-consistent diagram-
matic perturbation theory that uses 78/f ~ N™! as a
small parameter. Such a mean-field theory provides a
smoothed density of states for which energies can be re-
solved only on the scale of the rate /7 ~ N8 between
collisions with the superconductor, not on smaller energy
scales, and is unable to deal with mesoscopic sample-to-
sample fluctuations of the excitation gap. Mesoscopic fluc-
tuations arise, e.g., upon varying the shape of a quantum
dot or the impurity configuration in a metal grain. The
lowest excited state e, fluctuates from sample to sample
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around the mean-field value Eg, with a probability distri-
bution P(e). It is the purpose of this paper to go beyond
mean-field theory and to study the mesoscopic fluctuations
of the excitation spectrum close to E,. Our main result is
that the gap distribution P(e;) is a universal function of
the rescaled energy x = (g, — E;)/A,, in a broad range
lx| < N?/3, where A, is defined in terms of the mean-field
density of states (1). The Fermi level itself (¢ = 0) falls
outside this range, which is why the universal gap distribu-
tion was not found in a recent related study [9]. Our main
findings are illustrated in Fig. 2. Note that the width of the
gap distribution A, ~ E 825 is parametrically smaller
than the gap size E, but bigger than the mean level spacing
o in the dot.

Also note that, in terms of the rescaled variable x,
the mean-field density pms is already universal, pns(x) =
7~ 1x1/2, though py is different from the true ensemble
averaged density of states (p); see Fig. 2. The difference
could arise, because the mean-field theory is unable to re-
solve the density of states on the energy scale A,.

We first consider the gap distribution in the absence of a
magnetic field and then include a time-reversal symmetry

FIG. I. A quantum dot (N) connected to a superconductor (S).
The voltages on the gates V; and V, change the shape of the dot.
Different values of the applied voltages create different samples
within the same ensemble.
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FIG 2 Mean-field and ensemble averaged density of states
pms and {p), together with the probability distribution P of
the excitation gap, as a function of the rescaled energy x =
(e1 — E;)/ A, These curves are the umiversal predictions of
the random-matrix theory

bireaking magnetic field The starting point of our calcula-
tion 1s the effective Hamiltonian for a quantum dot coupled
to a supeiconductor [10],

=

—awwt
—awwt

" @
Here H 1s an M X M Hermitian matrix 1epresenting the
Harmultonian of the isolated quantum dot, and W 1s an
M X N matrix that describes the coupling to the supercon-
ductor via an N-mode pont contact For a ballistic point
contact, Wyn = 7 18 (M 8)/2 [11] The number M 1s
sent to infinity at the end of the calculation [12] The ef-
fective Hamiltonian 1s a valid description of the low-lying
excitations 1f the 1ate N6 of collisions with the supercon-
ductor (1, the escape rate from the normal quantum dot)
1s much smalle1 than the oider parameter A of the bulk su-
perconductor See Ref [10] for a microscopic derivation
of Eq (2) In the absence of a magnetic field, the matrix
H 1s symmetiic To describe an ensemble of chaotic quan-
tum dots (or disordered metal grains), we take H from the
Gaussian orthogonal ensemble (GOE) of random-matrix
theoty [13],

2
482M

P(H) « exp( - TrH2> 3)
The choice of the distribution (3) 1s justified, since both
charactenstic energy scales E, and A, of our problem are
small compared to the 1nverse ergodic time /i/7erg (This
1s the Thouless energy of the 1solated quantum dot ) In this
case, validity of random-matrix theory for the Hamiltonian
H of the 1solated quantum dot 1s known to be valid for
dots with diffusive [14] and ballistic chaotic [15] electron
dynamics

Calculation of the density of states of Z{ using pertur
bation theory in N ™! yields the result (1) discussed 1n the
mntroduction  Our problem 1s to go beyond peituibation
theory and find the probability distribution P(e;) of the
lowest positive eigenvalue g; of the Hamiltonian (2)

We have solved this problem numerically by exact diag-
onalization of the effective Hamiltonian {  Before pre-
senting these results, we fitst describe an entuely different
approach, which leads to an analytical piediction for the
gap distribution We invoke the umiversality hypothesis of
random-matrix theoty, that the local spectial statistics of
a chaotic system depends only on the symmetiy propei-
ties of the Hamiltonian, and not on microscopic proper-
ties This universality hypothesis has been proven for a
broad class of Hamiltonians in the bulk of the specttum
[16] but 1s believed to be valid near the edge of the spec-
trum as well A proof exists for so-called trace ensembles,
having P(H) « exp[—trf(H)}], with f an arbitrary poly-
nomual function [17]

The mean-field density of states near the edge can be
written in the form

pmi(e) = (227,

a

e>b ()

According to the umiversality hypothesis, the spectral
statistics neai the edge, in rescaled variables (¢ — b)/a,
depends only on the exponent p and on the symme-
try mdex B [B =1 (2) in the piesence (absence) of
time-reversal symmetry] Generically, p 1s either 1/2
(soft edge) or —1/2 (hard edge) For our problem, we
have 8 = 1,p = 1/2,a = 7**A,, b = E,, cf Eq (1)
The cortesponding gap distribution 1s given by [18]

P(e) = “L Fil(e — Ep)/A,], ©

A = e -4 [ [a6) + & = g6
©

The function g{x) 1s the solution of
q"(x) = —xq(x) + 2¢°(x), )

with asymptotic behavior g{x) — Ai(—x) as x — —x
[Ai(x) bemng the Airy function]

The distribution (5) 1s shown in Fig 3 (solid cuive)
It 1s centered at a positive value of x = (s; — E,)/A,,
meaning that the average gapsize (g1) 1s about A, bigger
than the mean-field gap E;, Fo1 small x there 1s a tail of
the form
3P,

P(x) = x K -1

1
4/ |x[1/4 exp(=
(3)

Nonuntversal corrections to the distribution (5) become
important for energy differences | — E4| = E,, hence
for |x] = N?3  Since the width of the gap distribution

875



VOLUME 86, NUMBER 5

PHYSICAL REVIEW LETTERS

29 JANUARY 2001

05

04r

03 1

P
o2r

FIG 3 Probability distribution of the rescaled excitation
gap x = (g; — E;)/A, Data pomnts follow from an exact
diagonahzation of 10* realizations of the effective Hamiltonian
(2) for different values of M and N (A M = 400, N = 200,
O M=600, N=150, O M =600, N=280) The
solid curve 1s the umversal prediction (5) of random-
matrix theory The mean of the data points has been adjusted
to fit the curve by applying a horizontal offset, no other fit
parameters are mvolved The inset shows the actual mean
(x) and root-mean-square value o of the data for M/N = 4
for different values of N, together with the random-matrix
prediction for N — o These 1esults are all in zero magnetic
field The dashed curve 1s the random-matrix theory prediction
(15) mn the presence of a time-reveisal symmetry breaking
magnetic field (8 = 2)

18 of order unity 1n the variable x, the probability to find a
sample with an excitation gap in the nonuniversal regime
18 exponentially small

In oider to veufy our universality hypothesis, we com-
pate Eq (5) with the results of an exact diagonalization
of the Hamiltonian (2) As one can see in Fig 3, the
numerical data are 1n good agieement with the analytical
prediction The small deviations can be atttibuted to the
finiteness of N and M 1n the numeiics

Let us now consider the effect of a weak magnetic field
on the gap distribution In the effective Hamiltonian, the
presence of a magnetic field 1s described by replacing H
by [19]

H(a) = H + 1aA ®

Heie A 1s an M X M 1eal antisymmetric matnx, whose
off-diagonal elements have the same variance as those of
H The parameter « 15 propoitional to the magnetic field,

LA
®y

Ma? = n( (10)

Terg O
where @ 1s the magnetic flux thiough the quantum dot,
Dy = h/e 1s the flux quantum, and % 1s a nonuniversal
numerical constant [11] The case @ = 0 conesponds
to the GOE that we consideied above, the case a = 1
cottesponds to the Gaussian unitaiy ensemble (GUE) of
fully bioken time 1eveisal symmet1y

876

The effect of a magnetic field on the density of states
in mean field theoty 1s known [4] The square-1oot singu-
lanty (1) near the gap still holds, but the magnitude of the
gap 1s 1educed The critical flux ®. at which £, = 0 and
hence the proximuty effect 1s fully suppressed 1s given by

NTep 6
h

Ma? ~ N = &, ~ dg (1)
This 1s a much larger flux than the flux @y, at which the

spectral statistics 1n the bulk of the spectrum ciosses over
fiom GOE to GUE, which 1s given by [19]

f o
Maz ~ 1 = CI)bulk -~ (I)O _Terﬁg (12)

We now aigue that the characteristic flux ®cqg. for the
spectial statistics at the edge of the spectrum 1s intermedi
ate between @, and @ We consider the effect of the
magnetic field on the lowest eigenvalue £, of # to second

oider 1n perturbation theoty,
2 KUAE _ (A 0
D a A=y -4
(13)

J#1 &1 T &
Since typically [(1]A[2)|> ~ M8%/7? and &7 — & ~
Ag, we see that the effect of level repulsion from the
neighboiing level &, on the lowest level £; becomes
comparable to A, ~ N1/38 1f

581 =

N7 8
h

The terms in Eq (13) with y > 1 give a umifoim shift
of all low-lying levels and, hence, do not affect the fluc
tuations Fot N > 1 the flux scale (14) for breaking
time-reversal symmetry at the edge of the spectrum 1s
much smaller than the critical flux @, needed to sup-

piess the proximity effect Indeed, using N ~ E,/8 we

find q)edge ~ q)oTelr/ngé/?’

1/2 .1/2
o, ~ <I)07'er/g Eg/ Notice that the naive substitution of &

by A, m expression (12) for ®pur would give the wrong
result for ®gqg.

To study numetically the ciossover 1n the gap fluctuation
statistics, N2/3 << N has to be satisfied, which 1s difficult
The analytical prediction for fully broken time-ieversal
symmetry 1s [18]

Ma? ~ N¥? = @ ~ @ (14)

Y 6 which 1s much smaller than

Pe) = S Fl(e = E)/AL, (9

R = e(- [ = Ead)  as)

This curve 1s shown dashed in Fig 3 The tail for small x
1S now given by

P(x) =

exp(—51x[*?), x< -1 (17)

8|x|
The gap fluctuations are

significantly 1educed by
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TABLE I Characteristic energy and magnetic flux scales for
the spectral statistics 1n the bulk and at the edge of the spectrum
and for the size of the gap

Flux scale
(DOT&ZSI/Z/I,ZI/Z
Edge statistics q)oTclélgl/éE;B/ﬁ!/z
Gap size E, (DoTl/ZEé/Z/ﬁl/Z

crg

Energy scale

Bulk statistics )
E1/352/3
&

application of a magnetic field, see Fig 3 and Eqs (8)
and (17) The suppression of the fluctuations 1s a generic
feature of the different level statistics for ensembles with
orthogonal and unitary symmetries, the ensembles with
less symmetry (the unitary ensemble) having a more ngid
and, hence, less fluctuating spectrum [13]

To make contact with Ref [9] we briefly discuss the im-
plications of our 1esults for the ensemble averaged density
of states (p(e)) in the subgap tegime The tail of P(x)
for x < —1 1s the same as the tail of {(p), cf Fig 2 We
conclude that [20]

(p(x)) eXP(‘%ﬁ“ x3/2> (18)

over a broad range A, < E, — ¢ < E, mside the mean-
field gap A different exponential decay (with a power of
2 nstead of 3/2 in the exponent) was predicted 1ecently
by Beloborodov, Narozhny, and Aleiner [9], for the subgap
density of states of an ensemble of superconducting grains
1n a weak magnetic field Since the mean-field density of
states 1n that problem 1s also of the form (1), the universal
GUE edge statistics should apply The reason that the unt-
versal decay (18) was not obtained i Ref [9] 1s that then
theory applies to the nonuniveisal energy range ¢ <K E,
near the Fermi level To emphasize the significance of
the universal energy 1ange we note that the probability to
have the lowest energy level in that range 1s larger than
in the nonuniversal range by an exponentially large factor
* exp[(Eg/Ag)3/2]

In conclusion, we have argued that the proximity effect
1 a mesoscopic system has a gap distribution which
1s umiversal once energy 1s measured in units of the
eneigy scale A, o« (E;82)!/3 defined from the mean-field
density of states p(s) = [(e — Eg)/A3]/?/m  Ths
universal distribution is the same as the distribution of the
smallest eigenvalue of the Gaussian orthogonal or unitary
ensembles from random-matrix theory, depending on
whether time-reversal symmetry i1s broken or not We
have identified the magnetic field scale for breaking
time-reversal symmetry and verified our iesults by exact
diagonalization of an effective Hamultonian Character-
wstic energy and magnetic field scales ate summarized 1n
Table I The umversality of our prediction should offer
ample opportunities for experimental observation

We thank I Aleimner, I Beloborodov, E Mishchenko,
and B Narozhny for useful discussions This woik was
supported by the Cornell Center for Mateials Research
under NSF Grant No DMR-9632275 and by the Dutch
Science Foundation NWO/FOM

[1] M Tinkham, Introduction to Superconductivity (McGiaw-
Hill, New York, 1995)

[2] A A Golubov and M Yu Kupriyanov, Sov Phys JETP
69, 805 (1989)

[3] W Belzig, C Bruder, and G Schon, Phys Rev B 54, 9443
(1996)

[4] J A Melsen, PW Brouwer,
C W] Beenakker, Europhys Leit
Phys Scrip 69, 223 (1997)

[51 A Lodder and Yu V Nazarov, Phys Rev B 58, 5783
(1998)

[6] F Zhou, P Charlat, B Spivak, and B Pannetier, ] Low
Temp Phys 110, 841 (1998)

[71 W Thra, M Leadbeater, ] L. Vega, and K Richter cond-
mat/9909100

[8] In a quantum dot or metal gram of size R, with Fermu
velocity vg and mean free path €, one has 1/7ey ~
veR 2min(€, R)

[9]1 I S Beloborodov, B N Narozhny, and I L. Aleiner, Phys
Rev Lett 85, 816 (2000)

[10] KM Frahm, PW Brouwer, J A Melsen, and
C W J Beenakker, Phys Rev Lett 76, 2981 (1996)

(111 C W J Beenakker, Rev Mod Phys 69, 731 (1997)

[12] In our numerical computations 1t was necessaly to choose
the ratio M /N relatively small in order to achieve the limt
N > 1 needed for universalhty of the gap distribution For
finite M /N, the mean-field result (1) still holds, but now
with coefficients ¢ and ¢’ for the energy scales E, and
A, that weakly depend on M/N For the comparison of
the numerical data with the prediction of random-matrix
theory we calculated E, and A, from the mean-field theory
[Eq (8) of Ref [4]] for the values of M/N used n the
exact diagonalizations No fit parameters are mnvolved 1n
this procedure

[13] M L Mehta, Random Matrices (Academic, New York,
1991)

[14] K B Efetov, Supersymmetry in Disorder and Chaos (Cam-
bridge University Press, Cambridge, England, 1996)

[15] A V Andreev, O Agam, B D Simons, and B L Altshuler,
Phys Rev Lett 76, 3947 (1996)

[16] T Guhr, A Muller-Groeling, and H A Weidenmuller,
Phys Rep 299, 189 (1998)

[17] E Kanzieper and V Freilikher, Phys Rev Lett 78, 3806
(1997)

[18] C A Tracy and H Widom, Commun Math Phys 159,
151 (1994), 177, 727 (1996)

[19] A Pandey and M L. Mehta, Commun Math Phys 87,
449 (1983)

[20] The complete random matrix-theory prediction 1s {p(x)) =
—-x A?(x) + [AY(x)P + %Bﬁ]Al(x)[l — [T Ay) dy]
The B = 1 result 1s plotted 1n Fig 2

K M Frahm, and
35, 7 (1997),

877




