9,180 research outputs found
Decidability of quantified propositional intuitionistic logic and S4 on trees
Quantified propositional intuitionistic logic is obtained from propositional
intuitionistic logic by adding quantifiers \forall p, \exists p over
propositions. In the context of Kripke semantics, a proposition is a subset of
the worlds in a model structure which is upward closed. Kremer (1997) has shown
that the quantified propositional intuitionistic logic H\pi+ based on the class
of all partial orders is recursively isomorphic to full second-order logic. He
raised the question of whether the logic resulting from restriction to trees is
axiomatizable. It is shown that it is, in fact, decidable. The methods used can
also be used to establish the decidability of modal S4 with propositional
quantification on similar types of Kripke structures.Comment: v2, 9 pages, corrections and additions; v1 8 page
Normal origamis of Mumford curves
An origami (also known as square-tiled surface) is a Riemann surface covering
a torus with at most one branch point. Lifting two generators of the
fundamental group of the punctured torus decomposes the surface into finitely
many unit squares. By varying the complex structure of the torus one obtains
easily accessible examples of Teichm\"uller curves in the moduli space of
Riemann surfaces. The p-adic analogues of Riemann surfaces are Mumford curves.
A p-adic origami is defined as a covering of Mumford curves with at most one
branch point, where the bottom curve has genus one. A classification of all
normal non-trivial p-adic origamis is presented and used to calculate some
invariants. These can be used to describe p-adic origamis in terms of glueing
squares.Comment: 21 pages, to appear in manuscripta mathematica (Springer
Charge mobility of discotic mesophases: A multiscale quantum/classical study
A correlation is established between the molecular structure and charge
mobility of discotic mesophases of hexabenzocoronene derivatives by combining
electronic structure calculations, Molecular Dynamics, and kinetic Monte Carlo
simulations. It is demonstrated that this multiscale approach can provide an
accurate ab-initio description of charge transport in organic materials
Irreversible Processes in a Universe modelled as a mixture of a Chaplygin gas and radiation
The evolution of a Universe modelled as a mixture of a Chaplygin gas and
radiation is determined by taking into account irreversible processes. This
mixture could interpolate periods of a radiation dominated, a matter dominated
and a cosmological constant dominated Universe. The results of a Universe
modelled by this mixture are compared with the results of a mixture whose
constituents are radiation and quintessence. Among other results it is shown
that: (a) for both models there exists a period of a past deceleration with a
present acceleration; (b) the slope of the acceleration of the Universe
modelled as a mixture of a Chaplygin gas with radiation is more pronounced than
that modelled as a mixture of quintessence and radiation; (c) the energy
density of the Chaplygin gas tends to a constant value at earlier times than
the energy density of quintessence does; (d) the energy density of radiation
for both mixtures coincide and decay more rapidly than the energy densities of
the Chaplygin gas and of quintessence.Comment: 8 pages, 1 figure, to be published in GR
Lattice and polarizability mediated spin activity in EuTiO_3
EuTiO_3 is shown to exhibit novel strong spin-charge-lattice coupling deep in
the paramagnetic phase. Its existence is evidenced by an, until now, unknown
response of the paramagnetic susceptibility at temperatures exceeding the
structural phase transition temperature T_S = 282K. The "extra" features in the
susceptibility follow the rotational soft zone boundary mode temperature
dependence above and below T_S. The theoretical modeling consistently
reproduces this behavior and provides reasoning for the stabilization of the
soft optic mode other than quantum fluctuations.Comment: 8 pages, 4 figure
Plastic-crystalline solid-state electrolytes: Ionic conductivity and orientational dynamics in nitrile mixtures
Many plastic crystals, molecular solids with long-range, center-of-mass
crystalline order but dynamic disorder of the molecular orientations, are known
to exhibit exceptionally high ionic conductivity. This makes them promising
candidates for applications as solid-state electrolytes, e.g., in batteries.
Interestingly, it was found that the mixing of two different
plastic-crystalline materials can considerably enhance the ionic dc
conductivity, an important benchmark quantity for electrochemical applications.
An example is the admixture of different nitriles to succinonitrile, the latter
being one of the most prominent plastic-crystalline ionic conductors. However,
until now only few such mixtures were studied. In the present work, we
investigate succinonitrile mixed with malononitrile, adiponitrile, and
pimelonitrile, to which 1 mol% of Li ions were added. Using differential
scanning calorimetry and dielectric spectroscopy, we examine the phase behavior
and the dipolar and ionic dynamics of these systems. We especially address the
mixing-induced enhancement of the ionic conductivity and the coupling of the
translational ionic mobility to the molecular reorientational dynamics,
probably arising via a "revolving-door" mechanism.Comment: 9 pages, 7 figures; revised version as accepted for publication in J.
Chem. Phy
Revealing the pure confinement effect in glass-forming liquids by dynamic mechanical analysis
Many molecular glass forming liquids show a shift of the glass transition Tg
to lower temperatures when the liquid is confined into mesoporous host
matrices. Two contrary explanations for this effect are given in literature:
First, confinement induced acceleration of the dynamics of the molecules leads
to an effective downshift of Tg increasing with decreasing pore size. Secondly,
due to thermal mismatch between the liquid and the surrounding host matrix,
negative pressure develops inside the pores with decreasing temperature, which
also shifts Tg to lower temperatures. Here we present novel dynamic mechanical
analysis measurements of the glass forming liquid salol in Vycor and Gelsil
with pore sizes of d = 2.6, 5.0 and 7.5 nm. The dynamic complex elastic
susceptibility data can be consistently described with the assumption of two
relaxation processes inside the pores: A surface induced slowed down relaxation
due to interaction with rough pore interfaces and a second relaxation within
the core of the pores. This core relaxation time is reduced with decreasing
pore size d, leading to a downshift of Tg in perfect agreement with recent DSC
measurements
Evidence of a bond-nematic phase in LiCuVO4
Polarized and unpolarized neutron scattering experiments on the frustrated
ferromagnetic spin-1/2 chain LiCuVO4 show that the phase transition at HQ of 8
Tesla is driven by quadrupolar fluctuations and that dipolar correlations are
short-range with moments parallel to the applied magnetic field in the
high-field phase. Heat-capacity measurements evidence a phase transition into
this high-field phase, with an anomaly clearly different from that at low
magnetic fields. Our experimental data are consistent with a picture where the
ground state above HQ has a next-nearest neighbour bond-nematic order along the
chains with a fluid-like coherence between weakly coupled chains.Comment: 5 pages, 4 figures. To appear in Phys. Rev. Let
Polymers near Metal Surfaces: Selective Adsorption and Global Conformations
We study the properties of a polycarbonate melt near a nickel surface as a
model system for the interaction of polymers with metal surfaces by employing a
multiscale modeling approach. For bulk properties a suitably coarse grained
bead spring model is simulated by molecular dynamics (MD) methods with model
parameters directly derived from quantum chemical calculations. The surface
interactions are parameterized and incorporated by extensive quantum mechanical
density functional calculations using the Car-Parrinello method. We find strong
chemisorption of chain ends, resulting in significant modifications of the melt
composition when compared to an inert wall.Comment: 8 pages, 3 figures (2 color), 1 tabl
- …