26,448 research outputs found
Compensation of the skin effect in low-frequency potential drop measurements
Potential drop measurements are routinely used in the non-destructive evaluation of component integrity. Potential drop measurements use either direct current (DC) or alternating current (AC), the latter will have superior noise performance due to the ability to perform phase sensitive detection and the reduction of flicker noise. AC measurements are however subject to the skin effect where the current is electromagnetically constricted to the surface of the component. Unfortunately, the skin effect is a function of magnetic permeability, which in ferromagnetic materials is sensitive to a number of parameters including stress and temperature, and consequently in-situ impedance measurements are likely to be unstable. It has been proposed that quasi-DC measurements, which benefit from superior noise performance, but also tend to the skin-effect independent DC measurement, be adopted for in-situ creep measurements for power station components. Unfortunately, the quasi-DC measurement will only tend to the DC distribution and therefore some remnant sensitivity to the skin effect will remain. This paper will present a correction for situations where the remnant sensitivity to the skin effect is not adequately suppressed by using sufficiently low frequency; the application of particular interest being the in-situ monitoring of the creep strain of power station components. The correction uses the measured phase angle to approximate the influence of the skin effect and allow recovery of the DC-asymptotic value of the resistance. The basis of the correction, that potential drop measurements are minimum phase is presented and illustrated on two cases; the creep strain sensor of practical interest and a conducting rod as another common case to illustrate generality. The correction is demonstrated experimentally on a component where the skin effect is manipulated by application of a range of elastic stresses
Preloaded latching device
A latching device is disclosed which is lever operated sequentially to actuate a set of collet fingers to provide a radial expansion and to actuate a force mechanism to provide a compressive gripping force for attaching first and second devices to one another. The latching device includes a body member having elongated collet fingers which, in a deactuated condition, is insertable through bores on the first and second devices so that gripping terminal portions on the collet fingers are proximate to the end of the bore of the first device while a spring assembly on the body member is located proximate to the outer surface of a second device. A lever is rotatable through 90 deg to move a latching rod to sequentially actuate and expand collet fingers and to actuate the spring assembly by compressing it. During the first 30 deg of movement of the lever, the collet fingers are actuated by the latching rod to provide a radial expansion and during the last 60 deg of movement of the lever, the spring assembly acts as a force mechanism and is actuated to develop a compressive latching force on the devices. The latching rod and lever are connected by a camming mechanism. The amount of spring force in the spring assembly can be adjusted; the body member can be permanently attached by a telescoping assembly to one of the devices; and the structure can be used as a pulling device for removing annular bearings or the like from blind bores
Stability of a chain of phase oscillators
We study a chain of N + 1 phase oscillators with asymmetric but uniform coupling. This type of chain possesses 2 N ways to synchronize in so-called traveling wave states, i.e., states where the phases of the single oscillators are in relative equilibrium. We show that the number of unstable dimensions of a traveling wave equals the number of oscillators with relative phase close to π . This implies that only the relative equilibrium corresponding to approximate in-phase synchronization is locally stable. Despite the presence of a Lyapunov-type functional, periodic or chaotic phase slipping occurs. For chains of lengths 3 and 4 we locate the region in parameter space where rotations (corresponding to phase slipping) are present
Acoustic metafluids made from three acoustic fluids
Significant reduction in target strength and radiation signature can be
achieved by surrounding an object with multiple concentric layers comprised of
three acoustic fluids. The idea is to make a finely layered shell with the
thickness of each layer defined by a unique transformation rule. The shell has
the effect of steering incident acoustic energy around the structure, and
conversely, reducing the radiation strength. The overall effectiveness and the
precise form of the layering depends upon the densities and compressibilities
of the three fluids. Nearly optimal results are obtained if one fluid has
density equal to the background fluid, while the other two densities are much
greater and much less than the background values. Optimal choices for the
compressibilities are also found. Simulations in 2D and 3D illustrate
effectiveness of the three fluid shell. The limited range of acoustic
metafluids that are possible using only two fluid constituents is also
discussed.Comment: 12 pages, 11 figure
Asymptotic safety in the sine-Gordon model
In the framework of the functional renormalization group method it is shown
that the phase structure of the 2-dimensional sine-Gordon model possesses a
nontrivial UV fixed point which makes the model asymptotically safe. The fixed
point exhibits strong singularity similarly to the scaling found in the
vicinity of the infrared fixed point. The singularity signals the upper
energy-scale limit to the validity of the model. We argue that the sine-Gordon
model with a momentum-dependent wavefunction renormalization is in a dual
connection with the massive sine-Gordon model.Comment: 8 pages, 3 figure
On the uniqueness of almost-Kaehler structures
We show uniqueness up to sign of positive, orthogonal almost-Kaehler
structures on any non-scalar flat Kaehler-Einstein surface.Comment: 4 pages, to appear in CRA
- …