5 research outputs found

    Copy number variations associated with autism spectrum disorders contribute to a spectrum of neurodevelopmental disorders

    No full text
    Autism spectrum disorders represent a range of neurodevelopmental disorders that have been shown to have a strong genetic etiological component. Microarray-based comparative genomic hybridization and other molecular cytogenetic techniques are discovering an increasing number of copy number variations in individuals with autism spectrum disorder. We examined the yield of abnormal microarray-based comparative genomic hybridization findings in our laboratory for individuals referred for testing for autism spectrum disorder. We also examined the presence of autistic features among 151 additional individuals who were referred for microarray-based comparative genomic hybridization testing for indications other than autism spectrum disorder but had genomic alterations overlapping those found in cases referred for autism spectrum disorder. We identified 1461 individuals referred for testing for autism spectrum disorder, with likely significant abnormalities reported in approximately 11.6% of individuals analyzed with whole-genome arrays. These abnormalities include alterations that encompass novel candidate genes such as SNTG2, SOX5, HFE, and TRIP38. A minority of individuals with overlapping abnormalities (19%) had autistic features, and many of the copy number variations identified in our study are inherited (69% among those found in individuals with autism spectrum disorder). Our results suggest these copy number variations are one of multiple factors contributing to the development of an autism spectrum disorder phenotype. Additionally, the broad phenotypic spectrum of the patients with these copy number variations suggests that these copy number variations are not autism spectrum disorder-specific but likely more generally impair neurodevelopment

    Recurrence, submicroscopic complexity, and potential clinical relevance of copy gains detected by array CGH that are shown to be unbalanced insertions by FISH

    No full text
    Insertions occur when a segment of one chromosome is translocated and inserted into a new region of the same chromosome or a non-homologous chromosome. We report 71 cases with unbalanced insertions identified using array CGH and FISH in 4909 cases referred to our laboratory for array CGH and found to have copy-number abnormalities. Although the majority of insertions were non-recurrent, several recurrent unbalanced insertions were detected, including three der(Y)ins(Y;18)(q?11.2;p11.32p11.32)pat inherited from parents carrying an unbalanced insertion. The clinical significance of these recurrent rearrangements is unclear, although the small size, limited gene content, and inheritance pattern of each suggests that the phenotypic consequences may be benign. Cryptic, submicroscopic duplications were observed at or near the insertion sites in two patients, further confounding the clinical interpretation of these insertions. Using FISH, linear amplification, and array CGH, we identified a 126-kb duplicated region from 19p13.3 inserted into MECP2 at Xq28 in a patient with symptoms of Rett syndrome. Our results demonstrate that although the interpretation of most non-recurrent insertions is unclear without high-resolution insertion site characterization, the potential for an otherwise benign duplication to result in a clinically relevant outcome through the disruption of a gene necessitates the use of FISH to determine whether copy-number gains detected by array CGH represent tandem duplications or unbalanced insertions. Further follow-up testing using techniques such as linear amplification or sequencing should be used to determine gene involvement at the insertion site after FISH has identified the presence of an insertion

    Recurrent HERV-H-Mediated 3q13.2-q13.31 Deletions Cause a Syndrome of Hypotonia and Motor, Language, and Cognitive Delays

    No full text
    We describe the molecular and clinical characterization of nine individuals with recurrent, 3.4-Mb, de novo deletions of 3q13.2-q13.31 detected by chromosomal microarray analysis. All individuals have hypotonia and language and motor delays; they variably express mild to moderate cognitive delays (8/9), abnormal behavior (7/9), and autism spectrum disorders (3/9). Common facial features include downslanting palpebral fissures with epicanthal folds, a slightly bulbous nose, and relative macrocephaly. Twenty-eight genes map to the deleted region, including four strong candidate genes, DRD3, ZBTB20, GAP43, and BOC, with important roles in neural and/or muscular development. Analysis of the breakpoint regions based on array data revealed directly oriented human endogenous retrovirus (HERV-H) elements of 3c5 kb in size and of >95% DNA sequence identity flanking the deletion. Subsequent DNA sequencing revealed different deletion breakpoints and suggested nonallelic homologous recombination (NAHR) between HERV-H elements as a mechanism of deletion formation, analogous to HERV-I-flanked and NAHR-mediated AZFa deletions. We propose that similar HERV elements may also mediate other recurrent deletion and duplication events on a genome-wide scale. Observation of rare recurrent chromosomal events such as these deletions helps to further the understanding of mechanisms behind naturally occurring variation in the human genome and its contribution to genetic disease
    corecore