24,480 research outputs found

    Global Existence and Uniqueness of Solutions to the Maxwell-Schr{\"o}dinger Equations

    Full text link
    The time local and global well-posedness for the Maxwell-Schr{\"o}dinger equations is considered in Sobolev spaces in three spatial dimensions. The Strichartz estimates of Koch and Tzvetkov type are used for obtaining the solutions in the Sobolev spaces of low regularities. One of the main results is that the solutions exist time globally for large data.Comment: 30 pages. In the revised version, the following modification was made. (1) A line for dedication was added in the first page. (2) Some lines were added at the bottom in page 4 and the top in page 5 in the first section to make the description accurate. (3) Some typographical errors were corrected throughout the pape

    QED Radiative Corrections to the Non-annihilation Processes Using the Structure Function and the Parton Shower

    Get PDF
    Inclusion of the QED higher order radiative corrections in the two-photon process, e+e- -> e+e- mu+mu-, is examined by means of the structure function and the parton shower. Results are compared with the exact O(α)O(\alpha) calculations and give a good agreement. These two methods should be universally applicable to any other non-annihilation processes like the single-W productions in the e+e- collisions. In this case, however, the energy scale for the evolution by the renormalization-group equation should be chosen properly depending on the dominant diagrams for the given process. A method to find the most suitable energy scale is proposed.Comment: 17 pages, LaTeX, 5 figure

    Sintering behavior of ultrafine silicon carbide powders obtained by vapor phase reaction

    Get PDF
    The sintering behavior of ultrafine SiC powder with average particle size of about 0.01-0.06 microns produced by a vapor phase reaction of the Me4Si-H2 system was studied at the temperature range of 1400-2050 deg. It was found that the homogeneous dispersion of C on SiC particles is important to remove the surface oxide layer effectively. B and C and inhibitive effect on SiC grain growth

    Superconductivity in heavily boron-doped silicon carbide

    Full text link
    The discoveries of superconductivity in heavily boron-doped diamond (C:B) in 2004 and silicon (Si:B) in 2006 renew the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily-boron doped silicon carbide (SiC:B). The sample used for that study consists of cubic and hexagonal SiC phase fractions and hence this lead to the question which of them participates in the superconductivity. Here we focus on a sample which mainly consists of hexagonal SiC without any indication for the cubic modification by means of x-ray diffraction, resistivity, and ac susceptibility.Comment: 9 pages, 5 figure

    QED Radiative Correction for the Single-W Production using a Parton Shower Method

    Get PDF
    A parton shower method for the photonic radiative correction is applied to the single W-boson production processes. The energy scale for the evolution of the parton shower is determined so that the correct soft-photon emission is reproduced. Photon spectra radiated from the partons are compared with those from the exact matrix elements, and show a good agreement. Possible errors due to a inappropriate energy-scale selection or due to the ambiguity of energy scale determination are also discussed, particularly for the measurements on triple gauge-couplings.Comment: 17 pages, 6 Postscript figure

    Effects of Rattling Phonons on the Quasiparticle Excitation and Dynamics in the Superconducting β\beta-Pyrochlore KOs2_2O6_6

    Get PDF
    Microwave penetration depth λ\lambda and surface resistance at 27 GHz are measured in high quality crystals of KOs2_2O6_6. Firm evidence for fully-gapped superconductivity is provided from λ(T)\lambda(T). Below the second transition at Tp8T_{\rm p}\sim 8 K, the superfluid density shows a step-like change with a suppression of effective critical temperature TcT_{\rm c}. Concurrently, the extracted quasiparticle scattering time shows a steep enhancement, indicating a strong coupling between the anomalous rattling motion of K ions and quasiparticles. The results imply that the rattling phonons help to enhance superconductivity, and that K sites freeze to an ordered state with long quasiparticle mean free path below TpT_{\rm p}.Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let

    Derivation of Green's Function of Spin Calogero-Sutherland Model by Uglov's Method

    Full text link
    Hole propagator of spin 1/2 Calogero-Sutherland model is derived using Uglov's method, which maps the exact eigenfunctions of the model, called Yangian Gelfand-Zetlin basis, to a limit of Macdonald polynomials (gl_2-Jack polynomials). To apply this mapping method to the calculation of 1-particle Green's function, we confirm that the sum of the field annihilation operator on Yangian Gelfand-Zetlin basis is transformed to the field annihilation operator on gl_2-Jack polynomials by the mapping. The resultant expression for hole propagator for finite-size system is written in terms of renormalized momenta and spin of quasi-holes and the expression in the thermodynamic limit coincides with the earlier result derived by another method. We also discuss the singularity of the spectral function for a specific coupling parameter where the hole propagator of spin Calogero-Sutherland model becomes equivalent to dynamical colour correlation function of SU(3) Haldane-Shastry model.Comment: 36 pages, 8 figure

    grc4f v1.0: a Four-fermion Event Generator for e+e- Collisions

    Get PDF
    grc4f is a Monte-Carlo package for generating e+e- to 4-fermion processes in the standard model. All of the 76 LEP-2 allowed fermionic final state processes evaluated at tree level are included in version 1.0. grc4f addresses event simulation requirements at e+e- colliders such as LEP and up-coming linear colliders. Most of the attractive aspects of grc4f come from its link to the GRACE system: a Feynman diagram automatic computation system. The GRACE system has been used to produce the computational code for all final states, giving a higher level of confidence in the calculation correctness. Based on the helicity amplitude calculation technique, all fermion masses can be kept finite and helicity information can be propagated down to the final state particles. The phase space integration of the matrix element gives the total and differential cross sections, then unweighted events are Generated. Initial state radiation (ISR) corrections are implemented in two ways, one is based on the electron structure function formalism and the second uses the parton shower algorithm called QEDPS. The latter can also be applied for final state radiation (FSR) though the interference with the ISR is not yet taken into account. Parton shower and hadronization of the final quarks are performed through an interface to JETSET. Coulomb correction between two intermediate W's, anomalous coupling as well as gluon contributions in the hadronic processes are also included.Comment: 30 pages, LaTeX, 5 pages postscript figures, uuencode
    corecore