14,028 research outputs found

    Strain-activated structural anisotropy in BaFe2As2

    Full text link
    High-resolution single crystal neutron diffraction measurements are presented probing the magnetostructural response to uniaxial pressure in the iron pnictide parent system BaFe2As2. Scattering data reveal a strain-activated, anisotropic broadening of nuclear Bragg reflections, which increases upon cooling below the resolvable onset of global orthorhombicity. This anisotropy in lattice coherence continues to diverge until a lower temperature scale---the first-order onset of antiferromagnetism---is reached. Our data suggest that antiferromagnetism and strong magnetoelastic coupling drive the strain-activated lattice response in this material and that the development of anisotropic lattice coherence under strain is the physical origin for the anomalous nematic anisotropy in this compound.Comment: 5 pages, 4 figure

    DeltaPhish: Detecting Phishing Webpages in Compromised Websites

    Full text link
    The large-scale deployment of modern phishing attacks relies on the automatic exploitation of vulnerable websites in the wild, to maximize profit while hindering attack traceability, detection and blacklisting. To the best of our knowledge, this is the first work that specifically leverages this adversarial behavior for detection purposes. We show that phishing webpages can be accurately detected by highlighting HTML code and visual differences with respect to other (legitimate) pages hosted within a compromised website. Our system, named DeltaPhish, can be installed as part of a web application firewall, to detect the presence of anomalous content on a website after compromise, and eventually prevent access to it. DeltaPhish is also robust against adversarial attempts in which the HTML code of the phishing page is carefully manipulated to evade detection. We empirically evaluate it on more than 5,500 webpages collected in the wild from compromised websites, showing that it is capable of detecting more than 99% of phishing webpages, while only misclassifying less than 1% of legitimate pages. We further show that the detection rate remains higher than 70% even under very sophisticated attacks carefully designed to evade our system.Comment: Preprint version of the work accepted at ESORICS 201

    Renormalization of tensor-network states

    Full text link
    We have discussed the tensor-network representation of classical statistical or interacting quantum lattice models, and given a comprehensive introduction to the numerical methods we recently proposed for studying the tensor-network states/models in two dimensions. A second renormalization scheme is introduced to take into account the environment contribution in the calculation of the partition function of classical tensor network models or the expectation values of quantum tensor network states. It improves significantly the accuracy of the coarse grained tensor renormalization group method. In the study of the quantum tensor-network states, we point out that the renormalization effect of the environment can be efficiently and accurately described by the bond vector. This, combined with the imaginary time evolution of the wavefunction, provides an accurate projection method to determine the tensor-network wavfunction. It reduces significantly the truncation error and enable a tensor-network state with a large bond dimension, which is difficult to be accessed by other methods, to be accurately determined.Comment: 18 pages 23 figures, minor changes, references adde
    corecore