19,282 research outputs found
Intensities of backscatter Mössbauer spectra
The intensities of γ‐ray and x‐ray backscatter Mössbauer spectra of ^(57)Fe nuclei in different matrix materials were studied theoretically and experimentally. A previous analysis by J. J. Bara [Phys. Status Solidi A 58, 349 (1980] showed that negative peak intensities occur in backscatter γ‐ray spectra when the ^(57)Fe nuclei are in a matrix of light elements. We report a confirmation of this work and offer a simple explanation of the phenomenon. The present paper extends Bara’s analysis to the case of conversion x‐ray spectra; expressions for the intensity of conversion x‐ray spectra as a function of absorber thickness and absorber material parameters are presented. We show that negative peak intensities are expected in conversion x‐ray spectra when the ^(57)Fe nuclei are in a matrix of heavy elements
Spontaneously axisymmetry breaking phase in a binary mixture of spinor Bose-Einstein condensates
We study the ground state phases for a mixture of two atomic spin-1
Bose-Einstein condensates (BECs) in the presence of a weak magnetic (B-) field.
The ground state is found to contain a broken-axisymmetry (BA) phase due to
competitions among intra- and inter-species spin exchange interactions and the
linear Zeeman shifts. This is in contrast to the case of a single species spin-
1 condensate, where the axisymmetry breaking results from competitions among
the linear and quadratic Zeeman shifts and the intra-species ferromagnetic
interaction. All other remaining ground state phases for the mixture are found
to preserve axisymmetry. We further elaborate on the ground state phase diagram
and calculate their Bogoliubov excitation spectra. For the BA phase, there
exist three Goldstone modes attempting to restore the broken U(1) and SO(2)
symmetries.Comment: 10 pages, 7 figure
Spin-roton excitations in the cuprate superconductors
We identify a new kind of elementary excitations, spin-rotons, in the doped
Mott insulator. They play a central role in deciding the superconducting
transition temperature Tc, resulting in a simple Tc formula,Tc=Eg/6, with Eg as
the characteristic energy scale of the spin rotons. We show that the degenerate
S=1 and S=0 rotons can be probed by neutron scattering and Raman scattering
measurements, respectively, in good agreement with the magnetic resonancelike
mode and the Raman A1g mode observed in the high-Tc cuprates.Comment: 10 pages, 9 figure
Spinor Fields and Symmetries of the Spacetime
In the background of a stationary black hole, the "conserved current" of a
particular spinor field always approaches the null Killing vector on the
horizon. What's more, when the black hole is asymptotically flat and when the
coordinate system is asymptotically static, then the same current also
approaches the time Killing vector at the spatial infinity. We test these
results against various black hole solutions and no exception is found. The
spinor field only needs to satisfy a very general and simple constraint.Comment: 19 page
Triaxially deformed relativistic point-coupling model for hypernuclei: a quantitative analysis of hyperon impurity effect on nuclear collective properties
The impurity effect of hyperon on atomic nuclei has received a renewed
interest in nuclear physics since the first experimental observation of
appreciable reduction of transition strength in low-lying states of
hypernucleus Li. Many more data on low-lying states of
hypernuclei will be measured soon for -shell nuclei, providing good
opportunities to study the impurity effect on nuclear low-energy
excitations. We carry out a quantitative analysis of hyperon impurity
effect on the low-lying states of -shell nuclei at the beyond-mean-field
level based on a relativistic point-coupling energy density functional (EDF),
considering that the hyperon is injected into the lowest
positive-parity () and negative-parity () states. We
adopt a triaxially deformed relativistic mean-field (RMF) approach for
hypernuclei and calculate the binding energies of hypernuclei as well
as the potential energy surfaces (PESs) in deformation plane.
We also calculate the PESs for the hypernuclei with good quantum
numbers using a microscopic particle rotor model (PRM) with the same
relativistic EDF. The triaxially deformed RMF approach is further applied in
order to determine the parameters of a five-dimensional collective Hamiltonian
(5DCH) for the collective excitations of triaxially deformed core nuclei.
Taking Mg and Si as examples, we analyse
the impurity effects of and on the low-lying states of
the core nuclei...Comment: 15 pages with 18 figures and 1 table (version to be published in
Physical Review C
The Fermi level effect in III-V intermixing: The final nail in the coffin?
Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 81, 2179 (1997) and may be found at
- …
