1,587 research outputs found
On Energy Reduction and Green Networking Enhancement due to In-Network Caching
In-network caching in information centric networking
(ICN) is considered as a promising approach to reducing
energy consumption of an entire network. However, it is also considered as an energy consuming technique. These contradictory claims lead to one research question: Does caching really reduce the energy consumption of the entire network? To answer the question, we formulate an ICN network as an optimization problem with a realistic energy consumption model for an ICN router. By solving the formulation assuming that ICN forwarding software currently under development is used as a forwarding engine of an ICN router, we reveal that in-network
caching alone does not reduce much energy but it enhances a currently developed green networking technique even though the forwarding engine is not fully optimized
On Energy Reduction and Green Networking Enhancement due to In-Network Caching
In-network caching in information centric networking
(ICN) is considered as a promising approach to reducing
energy consumption of an entire network. However, it is also considered as an energy consuming technique. These contradictory claims lead to one research question: Does caching really reduce the energy consumption of the entire network? To answer the question, we formulate an ICN network as an optimization problem with a realistic energy consumption model for an ICN router. By solving the formulation assuming that ICN forwarding software currently under development is used as a forwarding engine of an ICN router, we reveal that in-network
caching alone does not reduce much energy but it enhances a currently developed green networking technique even though the forwarding engine is not fully optimized
Power Consumption Model of NDN-Based Multicore Software Router Based on Detailed Protocol Analysis
Named data networking (NDN) has received considerable attention recently, mainly due to its built-in caching, which is expected to enable widespread and transparent operator-controlled caching. One of the important research challenges is to reduce the amount of power consumed by NDN networks as it has been shown that NDN's name prefix matching and caching are power-hungry. As a first step to achieving power-efficient NDN networks, in this paper, we develop a power consumption model of a multicore software NDN router. By applying this model to analyze how caching reduces power, we report that caching can reduce power consumption of an NDN network if the power consumption of routers is in proportion to their load and the computation of caching is as light as that of forwarding
Weak-Coupling Theory for Multiband Superconductivity Induced by Jahn-Teller Phonons
Emergence of superconductivity in a two-band system coupled with breathing
and Jahn-Teller phonons is discussed in a weak-coupling limit. With the use of
a standard quantum mechanical procedure, the phonon-mediated attraction is
derived. From the analysis of the model including such attraction, a BCS-like
formula for a superconducting transition temperature is obtained.
When only the breathing phonon is considered, is the same as that
of the one-band model. On the other hand, when Jahn-Teller phonons are active,
is significantly enhanced by the interband attraction even within
the weak-coupling limit. Relevance of the present result to actual materials
such as iron pnictides is briefly commented.Comment: 4 pages, 3 figures
Doping dependence of the exchange energies in bilayer manganites: Role of orbital degrees of freedom
Recently, an intriguing doping dependence of the exchange energies in the
bilayer manganites has been observed in the neutron
scattering experiments. The intra-layer exchange only weakly changed with
doping while the inter-layer one drastically decreased. Here we propose a
theory which accounts for these experimental findings. We argue, that the
observed striking doping dependence of the exchange energies can be attributed
to the evaluation of the orbital level splitting with doping. The latter is
handled by the interplay between Jahn-Teller effect (supporting an axial
orbital) and the orbital anisotropy of the electronic band in the bilayer
structure (promoting an in-plane orbital), which is monitored by the Coulomb
repulsion. The presented theory, while being a mean-field type, describes well
the experimental data and also gives the estimates of the several interesting
energy scales involved in the problem.Comment: Added references, corrected typos. To appear in Phys. Rev.
A deformed analogue of Onsager's symmetry in the XXZ open spin chain
The XXZ open spin chain with general integrable boundary conditions is shown
to possess a q-deformed analogue of the Onsager's algebra as fundamental
non-abelian symmetry which ensures the integrability of the model. This
symmetry implies the existence of a finite set of independent mutually
commuting nonlocal operators which form an abelian subalgebra. The transfer
matrix and local conserved quantities, for instance the Hamiltonian, are
expressed in terms of these nonlocal operators. It follows that Onsager's
original approach of the planar Ising model can be extended to the XXZ open
spin chain.Comment: 12 pages; LaTeX file with amssymb; v2: typos corrected,
clarifications in the text; v3: minor changes in references, version to
appear in JSTA
Complete Bethe Ansatz solution of the open spin-s XXZ chain with general integrable boundary terms
We consider the open spin-s XXZ quantum spin chain with N sites and general
integrable boundary terms for generic values of the bulk anisotropy parameter,
and for values of the boundary parameters which satisfy a certain constraint.
We derive two sets of Bethe Ansatz equations, and find numerical evidence that
together they give the complete set of eigenvalues of the transfer
matrix. For the case s=1, we explicitly determine the Hamiltonian, and find an
expression for its eigenvalues in terms of Bethe roots.Comment: 23 pages -- Latex2e; misprints in appendix correcte
Effects of guanidine on synaptic transmission in the spinal cord of the frog
The effects of guanidine on motoneurons of the isolated frog spinal cord were studied by adding the drug to the solution bathing the cord during intracellular recording. Guanidine (5·10–4 M) did not alter the membrane potential of motoneurons.
The main effect was a marked increase of the amplitudes and frequencies of small spontaneously occurring inhibitory postsynaptic potentials. The hyperpolarizing component of postsynaptic potentials evoked by stimulation of dorsal roots was also enhanced by guanidine. Higher concentrations of guanidine (5·10–3 M) resulted in a very large and irreversible increase of the small spontaneously occurring inhibitory potentials, which now appeared in a regular, rhythmic pattern.
The effects of guanidine could easily be blocked by increasing the magnesium ions (15 mM) in the bath solution.
These results indicate that guanidine facilitates the release of an inhibitory transmitter in afferent terminals of the frog spinal cord either by a direct action on these terminals or indirectly by an action on nerve endings impinging on inhibitory interneurons
``Flux'' state in double exchange model
We study the ground state properties of the double-exchange systems. The
phase factor of the hopping matrix elements arises from spin texture
in two or more dimensions. A novel ``flux'' state is stabilized against the
canted antiferromagnetic and spiral spin states. In a certain range of hole
doping, the phase separation occurs between the ``flux'' state and
antiferromagnetic states. Constructing a trial state which provides the
rigorous upper bound on the ground state, we show that the metallic canted
antiferromagnetic state is not stable in the double exchange model.Comment: REVTEX, 8 pages and 4 PS figure
Direct Observation of Field-Induced Incommensurate Fluctuations in a One-Dimensional S=1/2 Antiferromagnet
Neutron scattering from copper benzoate, Cu(C6D5COO)2 3D2O, provides the
first direct experimental evidence for field-dependent incommensurate low
energy modes in a one-dimensional spin S = 1/2 antiferromagnet. Soft modes
occur for wavevectors q=\pi +- dq(H) where dq(H) ~ 2 \pi M(H)/g\mu_B as
predicted by Bethe ansatz and spinon descriptions of the S = 1/2 chain.
Unexpected was a field-induced energy gap , where
as determined from specific heat measurements. At H = 7 T
(g\mu_B H/J = 0.52), the magnitude of the gap varies from 0.06 - 0.3 J
depending on the orientation of the applied field.Comment: 11 pages, 5 postscript figures, LaTeX, Submitted to PRL 3/31/97,
e-mail comments to [email protected]
- …