609 research outputs found

    Interfacial adhesion and toughening mechanisms in an alloy of polycarbonate/polyethylene

    Full text link
    Interfacial adhesion and toughening mechanisms in an alloy of polycarbonate/polyethylene (PC/PE) are investigated using transmission electron microscopy. In contrast to the general speculation, it is found that the PE particles strongly adhere to the PC matrix. The toughening mechanisms in the PC/PE blend are found to be debonding of the PC/PE interface, which relieves the triaxial tension in front of the crack tip, followed by shear banding of the PC matrix. Possible causes for such an unexpected strong interfacial adhesion between PC and PE are discussed. Also, the importance of the cavitational strength of the toughener phase in toughness optimization is addressed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30378/1/0000780.pd

    Update on Mechanical Analysis of Monolithic Fuel Plates

    Get PDF
    Results on the relative bond strength of the fuel-clad interface in monolithic fuel plates have been presented at previous RRFM conferences. An understanding of mechanical properties of the fuel, cladding, and fuel / cladding interface has been identified as an important area of investigation and quantification for qualification of monolithic fuel forms. Significant progress has been made in the area of mechanical analysis of the monolithic fuel plates, including mechanical property determination of fuel foils, cladding processed by both hot isostatic pressing and friction bonding, and the fuel-clad composite. In addition, mechanical analysis of fabrication induced residual stress has been initiated, along with a study to address how such stress can be relieved prior to irradiation. Results of destructive examinations and mechanical tests are presented along with analysis and supporting conclusions. A brief discussion of alternative non-destructive evaluation techniques to quantify not only bond quality, but also bond integrity and strength, will also be provided. These are all necessary steps to link out-of-pile observations as a function of fabrication with in-pile behaviours

    Fabrication of dual phase magnesia-zirconia ceramics doped with plutonia and erbia

    Get PDF
    Dual phase magnesia-zirconia ceramics doped with plutonia and erbia are being evaluated as an inert matrix fuel (IMF) for light water reactors (LWR). The motivation for this work is to develop an IMF with a thermal conductivity superior to that of the fuels based on single-phase yttria stabilized zirconia. The innovative fuel developed at INL is comprised of two major phases: pure MgO and quaternary solid solution consisting of MgO, ZrO{sub 2}, Er{sub 2}O{sub 3} and PuO{sub 2}. Pure MgO phase acts as an efficient heat conductor. It has been shown [1] that dual phase MgO-ZrO{sub 2} ceramics have the thermal conductivity superior to that of UO{sub 2} and have notable chemical resistance to water at the temperature of 573 K and pressure 8.6 MPa, which makes them attractive for use as an IMF matrix in LWRs

    Role of A20 in cIAP-2 Protection against Tumor Necrosis Factor α (TNF-α)-Mediated Apoptosis in Endothelial Cells

    Get PDF
    Tumor necrosis factor α (TNF-α) influences endothelial cell viability by altering the regulatory molecules involved in induction or suppression of apoptosis. However, the underlying mechanisms are still not completely understood. In this study, we demonstrated that A20 (also known as TNFAIP3, tumor necrosis factor α-induced protein 3, and an anti-apoptotic protein) regulates the inhibitor of apoptosis protein-2 (cIAP-2) expression upon TNF-α induction in endothelial cells. Inhibition of A20 expression by its siRNA resulted in attenuating expression of TNF-α-induced cIAP-2, yet not cIAP-1 or XIAP. A20-induced cIAP-2 expression can be blocked by the inhibition of phosphatidyl inositol-3 kinase (PI3-K), but not nuclear factor (NF)-κB, while concomitantly increasing the number of endothelial apoptotic cells and caspase 3 activation. Moreover, TNF-α-mediated induction of apoptosis was enhanced by A20 inhibition, which could be rescued by cIAP-2. Taken together, these results identify A20 as a cytoprotective factor involved in cIAP-2 inhibitory pathway of TNF-α-induced apoptosis. This is consistent with the idea that endothelial cell viability is dependent on interactions between inducers and suppressors of apoptosis, susceptible to modulation by TNF-α
    • …
    corecore