30,446 research outputs found
Strain modification in coherent Ge and SixGe1–x epitaxial films by ion-assisted molecular beam epitaxy
We have observed large changes in Ge and SixGe1–x layer strain during concurrent molecular beam epitaxial growth and low-energy bombardment. Layers are uniformly strained, coherent with the substrate, and contain no dislocations, suggesting that misfit strain is accommodated by free volume changes associated with injection of ion bombardment induced point defects. The dependence of layer strain on ion energy, ion-atom flux ratio, and temperature is consistent with the presence of a uniform dispersion of point defects at high concentration. Implications for distinguishing ion-surface interactions from ion-bulk interactions are discussed
Charge echo in a Cooper-pair box
A spin-echo-type technique is applied to an artificial two-level system that
utilizes charge degree of freedom in a small superconducting electrode.
Gate-voltage pulses are used to produce the necessary pulse sequence in order
to eliminate the inhomogeneity effect in the time-ensemble measurement and to
obtain refocused echo signals. Comparison of the decay time of the observed
echo signal with estimated decoherence time suggests that low-frequency
energy-level fluctuations due to the 1/f charge noise dominate the dephasing in
the system.Comment: 4 pages, 3 figure
Self-consistent determination of the perpendicular strain profile of implanted Si by analysis of x-ray rocking curves
Results of a determination of strain perpendicular to the surface and of the damage in (100) Si single crystals irradiated by 250-keV Ar+ ions at 77 K are presented. Double-crystal x-ray diffraction and dynamical x-ray diffraction theory are used. Trial strain and damage distributions were guided by transmission electron microscope observations and Monte Carlo simulation of ion energy deposition. The perpendicular strain and damage profiles, determined after sequentially removing thin layers of Ar+-implanted Si, were shown to be self-consistent, proving the uniqueness of the deconvolution. Agreement between calculated and experimental rocking curves is obtained with strain and damage distributions which closely follow the shape of the trim simulations from the maximum damage to the end of the ion range but fall off more rapidly than the simulation curve near the surface. Comparison of the trim simulation and the strain profile of Ar+-implanted Si reveals the importance of annealing during and after implantation and the role of complex defects in the final residual strain distribution
EffiTest: Efficient Delay Test and Statistical Prediction for Configuring Post-silicon Tunable Buffers
At nanometer manufacturing technology nodes, process variations significantly
affect circuit performance. To combat them, post- silicon clock tuning buffers
can be deployed to balance timing bud- gets of critical paths for each
individual chip after manufacturing. The challenge of this method is that path
delays should be mea- sured for each chip to configure the tuning buffers
properly. Current methods for this delay measurement rely on path-wise
frequency stepping. This strategy, however, requires too much time from ex-
pensive testers. In this paper, we propose an efficient delay test framework
(EffiTest) to solve the post-silicon testing problem by aligning path delays
using the already-existing tuning buffers in the circuit. In addition, we only
test representative paths and the delays of other paths are estimated by
statistical delay prediction. Exper- imental results demonstrate that the
proposed method can reduce the number of frequency stepping iterations by more
than 94% with only a slight yield loss.Comment: ACM/IEEE Design Automation Conference (DAC), June 201
Quantum noise in the Josephson charge qubit
We study decoherence of the Josephson charge qubit by measuring energy
relaxation and dephasing with help of the single-shot readout. We found that
the dominant energy relaxation process is a spontaneous emission induced by
quantum noise coupled to the charge degree of freedom. Spectral density of the
noise at high frequencies is roughly proportional to the qubit excitation
energy.Comment: Submitted to Phys. Rev. Letter
Application of selective epitaxy to fabrication of nanometer scale wire and dot structures
The selective growth of nanometer scale GaAs wire and dot structures using metalorganic vapor phase epitaxy is demonstrated. Spectrally resolved cathodoluminescence images as well as spectra from single dots and wires are presented. A blue shifting of the GaAs peak is observed as the size scale of the wires and dots decreases
Parity effect in superconducting aluminum single electron transistors with spatial gap profile controlled by film thickness
We propose a novel method for suppression of quasiparticle poisoning in Al
Coulomb blockade devices. The method is based on creation of a proper energy
gap profile along the device. In contrast to the previously used techniques,
the energy gap is controlled by the film thickness. Our transport measurements
confirm that the quasiparticle poisoning is suppressed and clear 2
periodicity is observed only when the island is made much thinner than the
leads. This result is consistent with the existing model and provides a simple
method to suppress quasiparticle poisoning
Crystallization and preliminary crystallographic analysis of the DNA gyrase B protein from B-stearothermophilus
DNA gyrase B (GyrB) from B. stearothermophilus has been crystallized in the presence of the non-hydrolyzable ATP analogue, 5'-adenylpl-beta-gamma-imidodiphosphate (ADPNP), by the dialysis method. A complete native data set to 3.7 Angstrom has been collected from crystals which belonged to the cubic space group I23 with unit-cell dimension a = 250.6 Angstrom. Self-rotation function analysis indicates the position of a molecular twofold axis. Low-resolution data sets of a thimerosal and a selenomethionine derivative have also been analysed. The heavy-atom positions are consistent with one dimer in the asymmetric unit
- …