39,544 research outputs found
Rotor-to-stator rub vibration in centrifugal compressor
One example of excessive vibration encountered during loading of a centrifugal compressor train (H type compressor with HP casing) is discussed. An investigation was made of the effects of the dynamic load on the bearing stiffness and the rotor-bearing system critical speed. The high vibration occurred at a "threshold load," but the machine didn't run smoothly due to rubs even when it had passed through the threshold load. The acquisition and discussion of the data taken in the field as well as a description of the case history which utilizes background information to identify the malfunction conditions is presented. The analysis shows that the failures, including full reverse precession rub and exact one half subharmonic vibration, were caused by the oversize bearings and displacement of the rotor center due to foundation deformation and misalignment between gear shafts, etc. The corrective actions taken to alleviate excessive vibration and the problems which remain to be solved are also presented
Recommended from our members
Investigate the impacts of assimilating satellite rainfall estimates on rainstorm forecast over southwest United States
Using the MM5-4DVAR system, a monsoon rainstorm case over southern Arizona (5-6 August 2002) was investigated for the influence of assimilating satellite rainfall estimates on precipitation forecasts. A set of numerical experiments was conducted with multiple configurations including using 20-km or 30-km grid distances and none or 3-h or 6-h assimilation time windows. Results show that satellite rainfall assimilation can improve the rainstorm-forecasting pattern and amount to some extent. The minimization procedure of 4DVAR is sensitive to model spatial resolution and the assimilation time window. The 3-h assimilation window with hourly rainfall data works well for the 6-h forecast, and for 12-h or longer forecasts, a 6-h assimilation window will be requested. Copyright 2004 by the American Geophysical Union
Recommended from our members
Impact of assimilating rainfall derived from radar and satellites on rainstorm forecasts over the Southwestern United States
The impact of assimilating rainfall derived from radar and satellites on rainstorm forecasts over the Southwestern United States is discussed. The major advantage of 4DVAR is the use of full model dynamics and physics to assimilate multiple-time-level observation data. Rainfall assimilation via 4DVAR is used to improve the moisture distributions in model IC. It is found that by using 4DVAR to generate model IC, the precipitation intensity and patterns can be improved substantially over the mid-latitude plain regions
Recommended from our members
Influence of assimilating rainfall derived from WSR-88D radar on the rainstorm forecasts over the southwestern United States
In this study, the impact of rainfall assimilation on the forecasts of convective rainfall over the mountainous areas in the southwestern United States is investigated. The rainfall is derived from the U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) radar network, and the fifth-generation Mesoscale Model (MM5) Four-Dimensional Variational (4DVAR) system is employed in the study. We evaluate the rainfall assimilation skill through two rainstorm events (5-6 August and 11-12 September 2002) that occurred over the southwestern United States in 2002. A series of experiments for the two cases is conducted. The results show that the minimization process in the 4DVAR is sensitive to the length of assimilation window and error variance in the observation data. Assimilation of rainfall can produce a better short-range precipitation forecast. However, the time range of improved forecasts is limited to about 15 hours with the model resolution of 20 km. It is indicated that rainfall assimilation produces more realistic moisture divergence and temperature fields in the initial conditions for the two cases. Therefore the forecast of rainstorms is closer to observations in both quantity and pattern. Copyright 2006 by the American Geophysical Union
Quantum broadcast communication
Broadcast encryption allows the sender to securely distribute his/her secret
to a dynamically changing group of users over a broadcast channel. In this
paper, we just consider a simple broadcast communication task in quantum
scenario, which the central party broadcasts his secret to multi-receiver via
quantum channel. We present three quantum broadcast communication schemes. The
first scheme utilizes entanglement swapping and Greenberger-Horne-Zeilinger
state to realize a task that the central party broadcasts his secret to a group
of receivers who share a group key with him. In the second scheme, based on
dense coding, the central party broadcasts the secret to multi-receiver who
share each of their authentication key with him. The third scheme is a quantum
broadcast communication scheme with quantum encryption, which the central party
can broadcast the secret to any subset of the legal receivers
- …