507 research outputs found

    Internal friction peaks observed in explosively deformed polycrystalline Mo, Nb, and Cu

    Get PDF
    Explosive deformation (50 kbar range) induced, in Cu, Mo and Nb, internal friction peaks identical to those observed after large normal deformation. The variation of the peaks with pressure for Mo and Nb lead to an explanation of these processes in terms of double kink generation in screw and edge dislocations

    Investigation of Graded La2NiO4+ Cathodes to Improve SOFC Electrochemical Performance

    Get PDF
    Mixed ionic and electronic conducting MIEC oxides are promising materials for use as cathodes in solid oxide fuel cells SOFCs due to their enhanced electrocatalytic activity compared with electronic conducting oxides. In this paper, the MIEC oxide La2NiO4+ was prepared by the sol-gel route. Graded cathodes were deposited onto yttria-stabilized zirconia YSZ pellets by dip-coating, and electrochemical impedance spectroscopy studies were performed to characterize the symmetrical cell performance. By adapting the slurries, cathode layers with different porosities and thicknesses were obtained. A ceria gadolinium oxide CGO barrier layer was introduced, avoiding insulating La2Zr2O7 phase formation and thus reducing resistance polarization of the cathode. A systematic correlation between microstructure, composition, and electrochemical performance of these cathodes has been performed. An improvement of the electrochemical performance has been demonstrated, and a reduction in the area specific resistance ASR by a factor of 4.5 has been achieved with a compact interlayer of La2NiO4+ between the dense electrolyte and the porous La2NiO4+ cathode layer. The lowest observed ASR of 0.11 cm2 at 800°C was obtained from a symmetrical cell composed of a YSZ electrolyte, a CGO interlayer, an intermediate compact La2NiO4+ layer, a porous La2NiO4+ electrode layer, and a current collection layer of platinum paste

    Continuous macroscopic limit of a discrete stochastic model for interaction of living cells

    Get PDF
    In the development of multiscale biological models it is crucial to establish a connection between discrete microscopic or mesoscopic stochastic models and macroscopic continuous descriptions based on cellular density. In this paper a continuous limit of a two-dimensional Cellular Potts Model (CPM) with excluded volume is derived, describing cells moving in a medium and reacting to each other through both direct contact and long range chemotaxis. The continuous macroscopic model is obtained as a Fokker-Planck equation describing evolution of the cell probability density function. All coefficients of the general macroscopic model are derived from parameters of the CPM and a very good agreement is demonstrated between CPM Monte Carlo simulations and numerical solution of the macroscopic model. It is also shown that in the absence of contact cell-cell interactions, the obtained model reduces to the classical macroscopic Keller-Segel model. General multiscale approach is demonstrated by simulating spongy bone formation from loosely packed mesenchyme via the intramembranous route suggesting that self-organizing physical mechanisms can account for this developmental process.Comment: 4 pages, 3 figure

    The Non-thermal Radio Jet Toward the NGC 2264 Star Formation Region

    Full text link
    We report sensitive VLA 3.6 cm radio observations toward the head of the Cone nebula in NGC 2264, made in 2006. The purpose of these observations was to study a non-thermal radio jet recently discovered, that appears to emanate from the head of the Cone nebula. The jet is highly polarized, with well-defined knots, and one-sided. The comparison of our images with 1995 archive data indicates no evidence of proper motions nor polarization changes. We find reliable flux density variations in only one knot, which we tentatively identify as the core of a quasar or radio galaxy. An extragalactic location seems to be the best explanation for this jet.Comment: 12 pages, 5 figure

    Phase Transition in Liquid Drop Fragmentation

    Full text link
    A liquid droplet is fragmented by a sudden pressurized-gas blow, and the resulting droplets, adhered to the window of a flatbed scanner, are counted and sized by computerized means. The use of a scanner plus image recognition software enables us to automatically count and size up to tens of thousands of tiny droplets with a smallest detectable volume of approximately 0.02 nl. Upon varying the gas pressure, a critical value is found where the size-distribution becomes a pure power-law, a fact that is indicative of a phase transition. Away from this transition, the resulting size distributions are well described by Fisher's model at coexistence. It is found that the sign of the surface correction term changes sign, and the apparent power-law exponent tau has a steep minimum, at criticality, as previously reported in Nuclear Multifragmentation studies [1,2]. We argue that the observed transition is not percolative, and introduce the concept of dominance in order to characterize it. The dominance probability is found to go to zero sharply at the transition. Simple arguments suggest that the correlation length exponent is nu=1/2. The sizes of the largest and average fragments, on the other hand, do not go to zero but behave in a way that appears to be consistent with recent predictions of Ashurst and Holian [3,4].Comment: 10 pages, 11 figures. LaTeX (revtex4) with psfig/epsfi

    Preparation of Ni–YSZ thin and thick films on metallic interconnects as cell supports. Applications as anode for SOFC

    Get PDF
    In this work, we propose the preparation of a duplex anodic layer composed of both a thin (100 nm) and a thick film (10 lm) with Ni–YSZ material. The support of this anode is a metallic substrate, which is the interconnect of the SOFC unit cell. The metallic support limits the temperature of thermal treatment at 800 C to keep a good interconnect mechanical behaviour and to reduce corrosion. We have chosen to elaborate anodic coatings by sol–gel route coupled with dip-coating process, which are low cost techniques and allow working with moderate temperatures. Thin films are obtained by dipping interconnect substrate into a sol, and thick films into an optimized slurry. After thermal treatment at only 800 C, anodic coatings are adherent and homogeneous. Thin films have compact microstructures that confer ceramic protective barrier on metal surface. Further coatings of 10 lm thick are porous and constitute the active anodic material

    Representation de connaissances dynamiques dans SHERPA

    Get PDF
    On decrit un modele de representation des connaissances developpe dans le cadre du projet Sherpa. L'objectif du projet est de definir, mettre en oeuvre et experimenter un systeme de representation de connaissances dynamiques base sur un modele a objets. Sherpa est un projet commun Imag et Inria. Les racines du modele se trouvent en intelligence artificielle, dans le domaine des bases de donnees orientees-objet et en CAO. Le modele presente ici integre en effet des concepts issus des langages de frames, des langages orientes-objets et repond a certains besoins d'applications qui doivent gerer des objets evolutifs. On presente les concepts de base du modele, puis la semantique et la mise en oeuvre de l'heritage. On decrit ensuite la notion de relation semantique entre objets. On evoque enfin la gestion d'objets evolutifs

    Exponential Distribution of Locomotion Activity in Cell Cultures

    Get PDF
    In vitro velocities of several cell types have been measured using computer controlled video microscopy, which allowed to record the cells' trajectories over several days. On the basis of our large data sets we show that the locomotion activity displays a universal exponential distribution. Thus, motion resulting from complex cellular processes can be well described by an unexpected, but very simple distribution function. A simple phenomenological model based on the interaction of various cellular processes and finite ATP production rate is proposed to explain these experimental results.Comment: 4 pages, 3 figure

    High-Temperature-Induced Defects in Tomato (Solanum lycopersicum) Anther and Pollen Development Are Associated with Reduced Expression of B-Class Floral Patterning Genes

    Get PDF
    Citation: Muller, F., Xu, J. M., Kristensen, L., Wolters-Arts, M., de Groot, P. F. M., Jansma, S. Y., . . . Rieu, I. (2016). High-Temperature-Induced Defects in Tomato (Solanum lycopersicum) Anther and Pollen Development Are Associated with Reduced Expression of B-Class Floral Patterning Genes. Plos One, 11(12), 14. doi:10.1371/journal.pone.0167614Sexual reproduction is a critical process in the life-cycle of plants and very sensitive to environmental perturbations. To better understand the effect of high temperature on plant reproduction, we cultivated tomato (Solanum lycopersicum) plants in continuous mild heat. Under this condition we observed a simultaneous reduction in pollen viability and appearance of anthers with pistil-like structures, while in a more thermotolerant genotype, both traits were improved. Ectopic expression of two pistil-specific genes, TRANSMITTING TISSUE SPECIFIC and TOMATO AGAMOUS LIKE11, in the anthers confirmed that the anthers had gained partial pistil identity. Concomitantly, expression of the B-class genes TOMATO APETALA3, TOMATO MADS BOX GENE6 (TM6) and LePISTILLATA was reduced in anthers under continuous mild heat. Plants in which TM6 was partially silenced reacted hypersensitively to temperature elevation with regard to the frequency of pistilloid anthers, pollen viability and pollen quantity. Taken together, these results suggest that high-temperature induced down-regulation of tomato B-class genes contributes to anther deformations and reduced male fertility. Improving our understanding of how temperature perturbs the molecular mechanisms of anther and pollen development will be important in the view of maintaining agricultural output under current climate changes

    Far-infrared spectroscopic images of M83

    Get PDF
    We have mapped the nearby face on barred spiral galaxy, M83 in the bright [CII] 158 ÎĽm, [OI] 63 and 146 ÎĽm, [NII] 122 ÎĽm, and [OIII] 88 ÎĽm fine-structure lines with the Long Wavelength Spectrometer (LWS) on ISO. The maps are nearly fully sampled, and cover the inner 6.75' x 6' region - essentially the entire optical disk. We also obtained a full LWS grating scan of the nucleus. The lines are detectable over the entire disk, and enhanced at the nucleus, where the [OI] 63 ÎĽm and [NII] lines are particularly strong. At the nucleus, the line ratios indicate a strong starburst headed by O9 stars. Surprisingly, the [OI] and [CII] line emission (from photodissociation regions) is not enhanced relative to [NII] (from low density HII regions) on the spiral arms. The line ratios are the same for the spiral arms and interarm regions. We find very strong emission in the [OIII] 88 ÎĽm, [OI] 146 ÎĽm, and [CII] lines at the intersection of the bar and spiral arm to the SW indicating particularly strong star formation activity there. The [OI] 63 ÎĽm/146 ÎĽm line ratio is quite small there likely the result of self absorption in the 63 ÎĽm line by enveloping clouds. The total luminosity of this emission peak is 1.2 x 109 Lodo
    • …
    corecore