2,750 research outputs found

    Survival before annihilation in Psi-prime decays

    Full text link
    We extend the simple scenario for Ψ\Psi' decays suggested a few years ago. The ccˉc\bar c pair in the Ψ\Psi' does not annihilate directly into three gluons but rather survives before annihilating. An interesting prediction is that a large fraction of all Ψ\Psi' decays could originate from the Ψηc(3π)\Psi' \to \eta_{c} (3\pi) channel which we urge experimentalists to identify. Our model solves the problem of the apparent hadronic excess in Ψ\Psi' decays as well as the ρπ\rho\pi puzzle since, in our view, the two-body decays of the Ψ\Psi' are naturally of electromagnetic origin. Further tests of this picture are proposed, e.g. J/Ψb1ηJ/\Psi \to b_{1}\eta.Comment: 6 pages, no figur

    Controlling the dynamics of a coupled atom-cavity system by pure dephasing : basics and potential applications in nanophotonics

    Full text link
    The influence of pure dephasing on the dynamics of the coupling between a two-level atom and a cavity mode is systematically addressed. We have derived an effective atom-cavity coupling rate that is shown to be a key parameter in the physics of the problem, allowing to generalize the known expression for the Purcell factor to the case of broad emitters, and to define strategies to optimize the performances of broad emitters-based single photon sources. Moreover, pure dephasing is shown to be able to restore lasing in presence of detuning, a further demonstration that decoherence can be seen as a fundamental resource in solid-state cavity quantum electrodynamics, offering appealing perspectives in the context of advanced nano-photonic devices.Comment: 10 pages, 7 figure

    Influence of Pure Dephasing on Emission Spectra from Single Photon Sources

    Get PDF
    We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for non-zero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for non-zero detuning. We investigate the characteristics of this intensity shifting effect and offer it as an explanation for the non-vanishing emission peaks at the cavity frequency found in recent experimental work.Comment: Published version, minor change

    Correlated Photon Emission from a Single II-VI Quantum Dot

    Full text link
    We report correlation and cross-correlation measurements of photons emitted under continuous wave excitation by a single II-VI quantum dot (QD) grown by molecular-beam epitaxy. A standard technique of microphotoluminescence combined with an ultrafast photon correlation set-up allowed us to see an antibunching effect on photons emitted by excitons recombining in a single CdTe/ZnTe QD, as well as cross-correlation within the biexciton (X2X_{2})-exciton (XX) radiative cascade from the same dot. Fast microchannel plate photomultipliers and a time-correlated single photon module gave us an overall temporal resolution of 140 ps better than the typical exciton lifetime in II-VI QDs of about 250ps.Comment: 4 pages, 3 figures, to appear in Appl. Phys. Let

    Monitoring stimulated emission at the single photon level in one-dimensional atoms

    Get PDF
    We theoretically investigate signatures of stimulated emission at the single photon level for a two-level atom interacting with a one-dimensional light field. We consider the transient regime where the atom is initially excited, and the steady state regime where the atom is continuously driven with an external pump. The influence of pure dephasing is studied, clearly showing that these effects can be evidenced with state of the art solid state devices. We finally propose a scheme to demonstrate the stimulation of one optical transition by monitoring another one, in three-level one-dimensional atoms.Comment: 4 pages, 4 figures. Improved introduction; Comments adde

    Universal optimal broadband photon cloning and entanglement creation in one dimensional atoms

    Get PDF
    We study an initially inverted three-level atom in the lambda configuration embedded in a waveguide, interacting with a propagating single-photon pulse. Depending on the temporal shape of the pulse, the system behaves either as an optimal universal cloning machine, or as a highly efficient deterministic source of maximally entangled photon pairs. This quantum transistor operates over a wide range of frequencies, and can be implemented with today's solid-state technologies.Comment: 5 pages, 3 figure
    corecore