41,069 research outputs found

    Weight function for the quantum affine algebra Uq(sl^3)U_q(\hat{sl}_3)

    Full text link
    We give a precise expression for the universal weight function of the quantum affine algebra Uq(sl^3)U_q(\hat{sl}_3). The calculations use the technique of projecting products of Drinfeld currents on the intersections of Borel subalgebras.Comment: 28 page

    Hot Spots on the Fermi Surface of Bi2212: Stripes versus Superstructure

    Full text link
    In a recent paper Saini et al. have reported evidence for a pseudogap around (pi,0) at room temperature in the optimally doped superconductor Bi2212. This result is in contradiction with previous ARPES measurements. Furthermore they observed at certain points on the Fermi surface hot spots of high spectral intensity which they relate to the existence of stripes in the CuO planes. They also claim to have identified a new electronic band along Gamma-M1 whose one dimensional character provides further evidence for stripes. We demonstrate in this Comment that all the measured features can be simply understood by correctly considering the superstructure (umklapp) and shadow bands which occur in Bi2212.Comment: 1 page, revtex, 1 encapsulated postscript figure (color

    Epistemic Logic with Partial Dependency Operator

    Full text link
    In this paper, we introduce partial\textit{partial} dependency modality D\mathcal{D} into epistemic logic so as to reason about partial\textit{partial} dependency relationship in Kripke models. The resulted dependence epistemic logic possesses decent expressivity and beautiful properties. Several interesting examples are provided, which highlight this logic's practical usage. The logic's bisimulation is then discussed, and we give a sound and strongly complete axiomatization for a sub-language of the logic

    H-Alpha and Hard X-Ray Observations of a Two-Ribbon Flare Associated with a Filament Eruption

    Full text link
    We perform a multi-wavelength study of a two-ribbon flare on 2002 September 29 and its associated filament eruption, observed simultaneously in the H-alpha line by a ground-based imaging spectrograph and in hard X-rays by RHESSI. The flare ribbons contain several H-alpha bright kernels that show different evolutional behaviors. In particular, we find two kernels that may be the footpoints of a loop. A single hard X-ray source appears to cover these two kernels and to move across the magnetic neutral line. We explain this as a result of the merging of two footpoint sources that show gradually asymmetric emission owing to an asymmetric magnetic topology of the newly reconnected loops. In one of the H-alpha kernels, we detect a continuum enhancement at the visible wavelength. By checking its spatial and temporal relationship with the hard X-ray emission, we ascribe it as being caused by electron beam precipitation. In addition, we derive the line-of-sight velocity of the filament plasma based on the Doppler shift of the filament-caused absorption in the H-alpha blue wing. The filament shows rapid acceleration during the impulsive phase. These observational features are in principal consistent with the general scenario of the canonical two-ribbon flare model.Comment: 15 pages, 5 figures, accepted for publication in Ap

    Features of pulsed synchronization of a systems with a tree-dimensional phase space

    Full text link
    Features of synchronization picture in the system with the limit cycle embedded in a three-dimensional phase space are considered. By the example of Ressler system and Dmitriev - Kislov generator under the action of a periodic sequence of delta - function it is shown, that synchronization picture significantly depends on the direction of pulse action. Features of synchronization tons appeared in these models are observed.Comment: 16 pages, 11 figure

    A re-visit of the phase-resolved X-ray and \gamma-ray spectra of the Crab pulsar

    Get PDF
    We use a modified outer gap model to study the multi-frequency phase-resolved spectra of the Crab pulsar. The emissions from both poles contribute to the light curve and the phase-resolved spectra. Using the synchrotron self-Compton mechanism and by considering the incomplete conversion of curvature photons into secondary pairs, the observed phase-averaged spectrum from 100 eV - 10 GeV can be explained very well. The predicted phase-resolved spectra can match the observed data reasonably well, too. We find that the emission from the north pole mainly contributes to Leading Wing 1. The emissions in the remaining phases are mainly dominated by the south pole. The widening of the azimuthal extension of the outer gap explains Trailing Wing 2. The complicated phase-resolved spectra for the phases between the two peaks, namely Trailing Wing 1, Bridge and Leading Wing 2, strongly suggest that there are at least two well-separated emission regions with multiple emission mechanisms, i.e. synchrotron radiation, inverse Compton scattering and curvature radiation. Our best fit results indicate that there may exist some asymmetry between the south and the north poles. Our model predictions can be examined by GLAST.Comment: 35 pages, 13 figures, accepted to publish in Ap

    Nuclear Transparency in Heavy Ion Collisions at 14.6 GeV/nucleon

    Get PDF
    The probability of a projectile nucleon to traverse a target nucleus without interaction is calculated for central Si-Pb collisions and compared to the data of E814. The calculations are performed in two independent ways, via Glauber theory and using the transport code UrQMD. For central collisions Glauber predictions are about 30 to 50% higher than experiment, while the output of UrQMD does not show the experimental peak of beam rapidity particles.Comment: 9 pages, 4 figures. submitted to Nucl. Phys.

    Disentangling the surface and bulk electronic structures of LaOFeAs

    Full text link
    We performed a comprehensive angle-resolved photoemission spectroscopy study of the electronic band structure of LaOFeAs single crystals. We found that samples cleaved at low temperature show an unstable and highly complicated band structure, whereas samples cleaved at high temperature exhibit a stable and clearer electronic structure. Using \emph{in-situ} surface doping with K and supported by first-principles calculations, we identify both surface and bulk bands. Our assignments are confirmed by the difference in the temperature dependence of the bulk and surface states.Comment: 5 pages, 5 figure
    • …
    corecore