We use a modified outer gap model to study the multi-frequency phase-resolved
spectra of the Crab pulsar. The emissions from both poles contribute to the
light curve and the phase-resolved spectra. Using the synchrotron self-Compton
mechanism and by considering the incomplete conversion of curvature photons
into secondary pairs, the observed phase-averaged spectrum from 100 eV - 10 GeV
can be explained very well. The predicted phase-resolved spectra can match the
observed data reasonably well, too. We find that the emission from the north
pole mainly contributes to Leading Wing 1. The emissions in the remaining
phases are mainly dominated by the south pole. The widening of the azimuthal
extension of the outer gap explains Trailing Wing 2. The complicated
phase-resolved spectra for the phases between the two peaks, namely Trailing
Wing 1, Bridge and Leading Wing 2, strongly suggest that there are at least two
well-separated emission regions with multiple emission mechanisms, i.e.
synchrotron radiation, inverse Compton scattering and curvature radiation. Our
best fit results indicate that there may exist some asymmetry between the south
and the north poles. Our model predictions can be examined by GLAST.Comment: 35 pages, 13 figures, accepted to publish in Ap