193 research outputs found

    Structure properties of even-even actinides

    Full text link
    Structure properties of fifty five even-even actinides have been calculated using the Gogny D1S force and the Hartree-Fock-Bogoliubov approach as well as the configuration mixing method. Theoretical results are compared with experimental data.Comment: 5 pages, 5 figures, proceeding of FUSION0

    Structure properties of 226{}^{226}Th and 256,258,260{}^{256,258,260}Fm fission fragments: mean field analysis with the Gogny force

    Full text link
    The constrained Hartree-Fock-Bogoliubov method is used with the Gogny interaction D1S to calculate potential energy surfaces of fissioning nuclei 226{}^{226}Th and 256,258,260{}^{256,258,260}Fm up to very large deformations. The constraints employed are the mass quadrupole and octupole moments. In this subspace of collective coordinates, many scission configurations are identified ranging from symmetric to highly asymmetric fragmentations. Corresponding fragment properties at scission are derived yielding fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, neutron multiplicities, charge polarization and total fragment kinetic energies.Comment: 15 pages, 23 figures, accepted for publication in Phys. Rev. C (2007

    Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction

    Full text link
    A systematic study of low energy nuclear structure at normal deformation is carried out using the Hartree-Fock-Bogoliubov theory extended by the Generator Coordinate Method and mapped onto a 5-dimensional collective quadrupole Hamiltonian. Results obtained with the Gogny D1S interaction are presented from dripline to dripline for even-even nuclei with proton numbers Z=10 to Z=110 and neutron numbers N less than 200. The properties calculated for the ground states are their charge radii, 2-particle separation energies, correlation energies, and the intrinsic quadrupole shape parameters. For the excited spectroscopy, the observables calculated are the excitation energies and quadrupole as well as monopole transition matrix elements. We examine in this work the yrast levels up to J=6, the lowest excited 0^+ states, and the two next yrare 2^+ states. The theory is applicable to more than 90% of the nuclei which have tabulated measurements. The data set of the calculated properties of 1712 even-even nuclei, including spectroscopic properties for 1693 of them, are provided in CEA website and EPAPS repository with this article \cite{epaps}.Comment: 51 pages with 26 Figures and 4 internal tables; this version is accepted by Physical Review

    Probing Correlated Ground States with Microscopic Optical Model for Nucleon Scattering off Doubly-Closed-Shell Nuclei

    Full text link
    The RPA long range correlations are known to play a significant role in understanding the depletion of single particle-hole states observed in (e, e') and (e, e'p) measurements. Here the Random Phase Approximation (RPA) theory, implemented using the D1S force is considered for the specific purpose of building correlated ground states and related one-body density matrix elements. These may be implemented and tested in a fully microscopic optical model for NA scattering off doubly-closed-shell nuclei. A method is presented to correct for the correlations overcounting inherent to the RPA formalism. One-body density matrix elements in the uncorrelated (i.e. Hartree-Fock) and correlated (i.e. RPA) ground states are then challenged in proton scattering studies based on the Melbourne microscopic optical model to highlight the role played by the RPA correlations. Effects of such correlations which deplete the nuclear matter at small radial distance (r << 2 fm) and enhance its surface region, are getting more and more sizeable as the incident energy increases. Illustrations are given for proton scattering observables measured up to 201 MeV for the 16^{16}O, 40^{40}Ca, 48^{48}Ca and 208^{208}Pb target nuclei. Handling the RPA correlations systematically improves the agreement between scattering predictions and data for energies higher than 150 MeV.Comment: 20 pages, 7 figure

    PHARAO Laser Source Flight Model: Design and Performances

    Full text link
    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.Comment: Accepted for publication in Review of Scientific Instrument

    The Long Journey from Ab Initio Calculations to Density Functional Theory for Nuclear Large Amplitude Collective Motion

    Full text link
    At present there are two vastly different ab initio approaches to the description of the the many-body dynamics: the Density Functional Theory (DFT) and the functional integral (path integral) approaches. On one hand, if implemented exactly, the DFT approach can allow in principle the exact evaluation of arbitrary one-body observable. However, when applied to Large Amplitude Collective Motion (LACM) this approach needs to be extended in order to accommodate the phenomenon of surface-hoping, when adiabaticity is strongly violated and the description of a system using a single (generalized) Slater determinant is not valid anymore. The functional integral approach on the other hand does not appear to have such restrictions, but its implementation does not appear to be straightforward endeavor. However, within a functional integral approach one seems to be able to evaluate in principle any kind of observables, such as the fragment mass and energy distributions in nuclear fission. These two radically approaches can likely be brought brought together by formulating a stochastic time-dependent DFT approach to many-body dynamics.Comment: 9 page

    Progress in noncommutative function theory

    Full text link
    In this expository paper we describe the study of certain non-self-adjoint operator algebras, the Hardy algebras, and their representation theory. We view these algebras as algebras of (operator valued) functions on their spaces of representations. We will show that these spaces of representations can be parameterized as unit balls of certain WW^{*}-correspondences and the functions can be viewed as Schur class operator functions on these balls. We will provide evidence to show that the elements in these (non commutative) Hardy algebras behave very much like bounded analytic functions and the study of these algebras should be viewed as noncommutative function theory

    Full-Folding Optical Potentials for Elastic Nucleon-Nucleus Scattering based on Realistic Densities

    Get PDF
    Optical model potentials for elastic nucleon nucleus scattering are calculated for a number of target nuclides from a full-folding integral of two different realistic target density matrices together with full off-shell nucleon-nucleon t-matrices derived from two different Bonn meson exchange models. Elastic proton and neutron scattering observables calculated from these full-folding optical potentials are compared to those obtained from `optimum factorized' approximations in the energy regime between 65 and 400 MeV projectile energy. The optimum factorized form is found to provide a good approximation to elastic scattering observables obtained from the full-folding optical potentials, although the potentials differ somewhat in the structure of their nonlocality.Comment: 21 pages, LaTeX, 17 postscript figure
    corecore