40 research outputs found
Organic-inorganic supramolecular solid catalyst boosts organic reactions in water
[EN] Coordination polymers and metal-organic frameworks are appealing as synthetic hosts for mediating chemical reactions. Here we report the preparation of a mesoscopic metal-organic structure based on single-layer assembly of aluminium chains and organic alkylaryl spacers. The material markedly accelerates condensation reactions in water in the absence of acid or base catalyst, as well as organocatalytic Michael-type reactions that also show superior enantioselectivity when comparing with the host-free transformation. The mesoscopic phase of the solid allows for easy diffusion of products and the catalytic solid is recycled and reused. Saturation transfer difference and two-dimensional H-1 nuclear Overhauser effect NOESY NMR spectroscopy show that non-covalent interactions are operative in these host-guest systems that account for substrate activation. The mesoscopic character of the host, its hydrophobicity and chemical stability in water, launch this material as a highly attractive supramolecular catalyst to facilitate (asymmetric) transformations under more environmentally friendly conditions.This work was funded by ERC-AdG-2014-671093-SynCatMatch and the Generalitat Valenciana (Prometeo). M.B. acknowledges the funding: CTQ2014-52633-P. The Severo Ochoa program (SEV-2012-0267) is thankfully acknowledged.GarcĂa GarcĂa, P.; Moreno RodrĂguez, JM.; DĂaz Morales, UM.; Bruix, M.; Corma CanĂłs, A. (2016). Organic-inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications. 7. https://doi.org/10.1038/ncomms10835S7Li, B. et al. A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. J. Am. Chem. Soc. 136, 6207â6210 (2014).Getman, R. B., Bae, Y.-S., Wilmer, C. E. & Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metalâorganic frameworks. Chem. Rev. 112, 703â723 (2012).Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. Hydrogen storage in metalâorganic frameworks. Chem. Rev. 112, 782â835 (2012).Li, B., Wen, H.-M., Zhou, W. & Chen, B. Porous metal-organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 5, 3468â3479 (2014).Li, J.-R., Sculley, J. & Zhou, H.-C. Metalâorganic frameworks for separations. Chem. Rev. 112, 869â932 (2012).Cui, Y., Yue, Y., Qian, G. & Chen, B. Luminescent functional metalâorganic frameworks. Chem. Rev. 112, 1126â1162 (2012).Yoon, M., Suh, K., Natarajan, S. & Kim, K. Proton conduction in metalâorganic frameworks and related modularly built porous solids. Angew. Chem. Int. Ed. 52, 2688â2700 (2013).Kurmoo, M. Magnetic metal-organic frameworks. Chem. Soc. Rev. 38, 1353â1379 (2009).Horcajada, P. et al. Metalâorganic frameworks in biomedicine. Chem. Rev. 112, 1232â1268 (2012).Liu, J. et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011â6061 (2014).Rowsell, J. L. C. & Yaghi, O. M. Metalâorganic frameworks: a new class of porous materials. Micropor. Mesopor. Mat. 73, 3â14 (2004).Eubank, J. F. et al. The next chapter in MOF pillaring strategies: trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms. J. Am. Chem. Soc. 133, 17532â17535 (2011).Rodenas, T. et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48â55 (2015).Chang, Z. et al. Rational construction of 3D pillared metalâorganic frameworks: synthesis, structures, and hydrogen adsorption properties. Inorg. Chem. 50, 7555â7562 (2011).Cheetham, A. K., Rao, C. N. R. & Feller, R. K. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chem. Commun. 4780â4795 (2006).Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373â1382 (2004).Senkovska, I. et al. New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al (OH) (bpdc) (bpdc=4,4â˛-biphenyl dicarboxylate). Micropor. Mesopor. Mat. 122, 93â98 (2009).Klein, N. et al. Structural flexibility and intrinsic dynamics in the M2(2,6-ndc)2(dabco) (M=Ni, Cu, Co, Zn) metal-organic frameworks. J. Mater. Chem. 22, 10303â10312 (2012).Hoffmann, H. C. et al. High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metalâorganic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni). J. Am. Chem. Soc. 133, 8681â8690 (2011).Gu, J.-M., Kim, W.-S. & Huh, S. Size-dependent catalysis by DABCO-functionalized Zn-MOF with one-dimensional channels. Dalton Trans. 40, 10826â10829 (2011).Carson, C. G. et al. Synthesis and structure characterization of copper terephthalate metalâorganic frameworks. Eur. J. Inorg. Chem. 2009, 2338â2343 (2009).Yang, Q. et al. Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. J. Mater. Chem. 22, 10210â10220 (2012).Li, H. et al. Visible light-driven water oxidation promoted by host-guest interaction between photosensitizer and catalyst with a high quantum efficiency. J. Am. Chem. Soc. 137, 4332â4335 (2015).Hapiot, F., Bricout, H., Menuel, S., Tilloy, S. & Monflier, E. Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Catal. Sci. Technol. 4, 1899â1908 (2014).Harada, A., Takashima, Y. & Nakahata, M. Supramolecular polymeric materials via cyclodextrin-guest interactions. Acc. Chem. Res. 47, 2128â2140 (2014).Cong, H. et al. Substituent effect of substrates on cucurbit[8]uril-catalytic oxidation of aryl alcohols. J. Mol. Catal. A Chem. 374-375, 32â38 (2013).Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L. & Lu, X. Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213â1247 (2012).Song, F.-T., Ouyang, G.-H., Li, Y., He, Y.-M. & Fan, Q.-H. Metallacrown ether catalysts containing phosphine-phosphite polyether ligands for Rh-catalyzed asymmetric hydrogenationâenhancements in activity and enantioselectivity. Eur. J. Org. Chem. 2014, 6713â6719 (2014).Rebilly, J.-N. & Reinaud, O. Calixarenes and resorcinarenes as scaffolds for supramolecular metallo-enzyme mimicry. Supramol. Chem. 26, 454â479 (2014).Ajami, D., Liu, L. & Rebek, J. Jr Soft templates in encapsulation complexes. Chem. Soc. Rev. 44, 490â499 (2015).Corma, A. & Garcia, H. Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis. Eur. J. Inorg. Chem. 2004, 1143â1164 (2004).Kemp, D. S., Cox, D. D. & Paul, K. G. Physical organic chemistry of benzisoxazoles. IV. Origins and catalytic nature of the solvent rate acceleration for the decarboxylation of 3-carboxybenzisoxazoles. J. Am. Chem. Soc. 97, 7312â7318 (1975).Thorn, S. N., Daniels, R. G., Auditor, M. T. & Hilvert, D. Large rate accelerations in antibody catalysis by strategic use of haptenic charge. Nature 373, 228â230 (1995).Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418â3438 (2009).Yoshizawa, M., Tamura, M. & Fujita, M. Diels-Alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 312, 251â254 (2006).Murase, T., Nishijima, Y. & Fujita, M. Cage-catalyzed knoevenagel condensation under neutral conditions in water. J. Am. Chem. Soc. 134, 162â164 (2012).Zhao, C., Toste, F. D., Raymond, K. N. & Bergman, R. G. Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. J. Am. Chem. Soc. 136, 14409â14412 (2014).Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246â249 (2009).Loiseau, T. et al. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and Îź3-Oxo-centered trinuclear units. J. Am. Chem. Soc. 128, 10223â10230 (2006).Bezverkhyy, I. et al. MIL-53(Al) under reflux in water: formation of Îł-AlO(OH) shell and H2BDC molecules intercalated into the pores. Micropor. Mesopor. Mat. 183, 156â161 (2014).Wang, L.-M. et al. Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron 66, 339â343 (2010).List B. Science of Synthesis: Asymmetric Organocatalysis 1, Lewis Base and Acid Catalysts Georg Thieme Verlag (2012).He, T., Gu, Q. & Wu, X.-Y. Highly enantioselective Michael addition of isobutyraldehyde to nitroalkenes. Tetrahedron 66, 3195â3198 (2010).Avila, A., Chinchilla, R., Fiser, B., GĂłmez-Bengoa, E. & NĂĄjera, C. Enantioselective Michael addition of isobutyraldehyde to nitroalkenes organocatalyzed by chiral primary amine-guanidines. Tetrahedron Asymmetry 25, 462â467 (2014).Meyer, B. & Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. 42, 864â890 (2003).Szczygiel, A., Timmermans, L., Fritzinger, B. & Martins, J. C. Widening the view on dispersantâpigment interactions in colloidal dispersions with saturation transfer difference NMR spectroscopy. J. Am. Chem. Soc. 131, 17756â17758 (2009).Basilio, N., MartĂn-Pastor, M. & GarcĂa-RĂo, L. Insights into the structure of the supramolecular amphiphile formed by a sulfonated calix[6]arene and alkyltrimethylammonium surfactants. Langmuir 28, 6561â6568 (2012).Mayer, M. & Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. 38, 1784â1788 (1999)
CCDC 662396: Experimental Crystal Structure Determination
An entry from the Cambridge Structural Database, the worldâs repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures
CCDC 662393: Experimental Crystal Structure Determination
An entry from the Cambridge Structural Database, the worldâs repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures
CCDC 662395: Experimental Crystal Structure Determination
An entry from the Cambridge Structural Database, the worldâs repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures
CCDC 662394: Experimental Crystal Structure Determination
An entry from the Cambridge Structural Database, the worldâs repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures