2,917 research outputs found
Selected non-holonomic functions in lattice statistical mechanics and enumerative combinatorics
We recall that the full susceptibility series of the Ising model, modulo
powers of the prime 2, reduce to algebraic functions. We also recall the
non-linear polynomial differential equation obtained by Tutte for the
generating function of the q-coloured rooted triangulations by vertices, which
is known to have algebraic solutions for all the numbers of the form , the holonomic status of the q= 4 being unclear. We focus on the
analysis of the q= 4 case, showing that the corresponding series is quite
certainly non-holonomic. Along the line of a previous work on the
susceptibility of the Ising model, we consider this q=4 series modulo the first
eight primes 2, 3, ... 19, and show that this (probably non-holonomic) function
reduces, modulo these primes, to algebraic functions. We conjecture that this
probably non-holonomic function reduces to algebraic functions modulo (almost)
every prime, or power of prime numbers. This raises the question to see whether
such remarkable non-holonomic functions can be seen as ratio of diagonals of
rational functions, or algebraic, functions of diagonals of rational functions.Comment: 27 page
The anisotropic Ising correlations as elliptic integrals: duality and differential equations
We present the reduction of the correlation functions of the Ising model on
the anisotropic square lattice to complete elliptic integrals of the first,
second and third kind, the extension of Kramers-Wannier duality to anisotropic
correlation functions, and the linear differential equations for these
anisotropic correlations. More precisely, we show that the anisotropic
correlation functions are homogeneous polynomials of the complete elliptic
integrals of the first, second and third kind. We give the exact dual
transformation matching the correlation functions and the dual correlation
functions. We show that the linear differential operators annihilating the
general two-point correlation functions are factorised in a very simple way, in
operators of decreasing orders.Comment: 22 page
Modular forms, Schwarzian conditions, and symmetries of differential equations in physics
We give examples of infinite order rational transformations that leave linear
differential equations covariant. These examples are non-trivial yet simple
enough illustrations of exact representations of the renormalization group. We
first illustrate covariance properties on order-two linear differential
operators associated with identities relating the same hypergeometric
function with different rational pullbacks. We provide two new and more general
results of the previous covariance by rational functions: a new Heun function
example and a higher genus hypergeometric function example. We then
focus on identities relating the same hypergeometric function with two
different algebraic pullback transformations: such remarkable identities
correspond to modular forms, the algebraic transformations being solution of
another differentially algebraic Schwarzian equation that emerged in a paper by
Casale. Further, we show that the first differentially algebraic equation can
be seen as a subcase of the last Schwarzian differential condition, the
restriction corresponding to a factorization condition of some associated
order-two linear differential operator. Finally, we also explore
generalizations of these results, for instance, to , hypergeometric
functions, and show that one just reduces to the previous cases through
a Clausen identity.
In a hypergeometric framework the Schwarzian condition encapsulates
all the modular forms and modular equations of the theory of elliptic curves,
but these two conditions are actually richer than elliptic curves or
hypergeometric functions, as can be seen on the Heun and higher genus example.
This work is a strong incentive to develop more differentially algebraic
symmetry analysis in physics.Comment: 43 page
Scaling functions in the square Ising model
We show and give the linear differential operators of
order q= n^2/4+n+7/8+(-1)^n/8, for the integrals which appear in the
two-point correlation scaling function of Ising model . The integrals are given in expansion around r= 0 in the basis of the formal
solutions of with transcendental combination
coefficients. We find that the expression is a solution
of the Painlev\'e VI equation in the scaling limit. Combinations of the
(analytic at ) solutions of sum to .
We show that the expression is the scaling limit of the
correlation function and . The differential Galois
groups of the factors occurring in the operators are
given.Comment: 26 page
Diagonals of rational functions, pullbacked 2F1 hypergeometric functions and modular forms (unabrigded version)
We recall that diagonals of rational functions naturally occur in lattice
statistical mechanics and enumerative combinatorics. We find that a
seven-parameter rational function of three variables with a numerator equal to
one (reciprocal of a polynomial of degree two at most) can be expressed as a
pullbacked 2F1 hypergeometric function. This result can be seen as the simplest
non-trivial family of diagonals of rational functions. We focus on some
subcases such that the diagonals of the corresponding rational functions can be
written as a pullbacked 2F1 hypergeometric function with two possible rational
functions pullbacks algebraically related by modular equations, thus showing
explicitely that the diagonal is a modular form. We then generalise this result
to eight, nine and ten parameters families adding some selected cubic terms at
the denominator of the rational function defining the diagonal. We finally show
that each of these previous rational functions yields an infinite number of
rational functions whose diagonals are also pullbacked 2F1 hypergeometric
functions and modular forms.Comment: 39 page
The perimeter generating functions of three-choice, imperfect, and 1-punctured staircase polygons
We consider the isotropic perimeter generating functions of three-choice,
imperfect, and 1-punctured staircase polygons, whose 8th order linear Fuchsian
ODEs are previously known. We derive simple relationships between the three
generating functions, and show that all three generating functions are joint
solutions of a common 12th order Fuchsian linear ODE. We find that the 8th
order differential operators can each be rewritten as a direct sum of a direct
product, with operators no larger than 3rd order. We give closed-form
expressions for all the solutions of these operators in terms of
hypergeometric functions with rational and algebraic arguments. The solutions
of these linear differential operators can in fact be expressed in terms of two
modular forms, since these hypergeometric functions can be expressed
with two, rational or algebraic, pullbacks.Comment: 28 page
- …