1,121 research outputs found

    Variation in Manduca sexta pollination-related floral traits and reproduction in a wild tobacco plant

    Get PDF
    Most flowering plants depend on animal pollination for successful sexual reproduction. Floral signals such as color, shape, and odor are crucial in establishing this (often mutualistic) interaction. Plant and pollinator phenotypes can vary temporally but also spatially, thus creating mosaic-like patterns of local adaptations. Here, we investigated natural variation in floral morphology, flower volatile emission, and phenology in four accessions of a self-compatible wild tobacco, Nicotiana attenuata, to assess how these traits match the sensory perception of a known pollinator, the hawkmoth Manduca sexta. These accessions differ in floral traits and also in their habitat altitudes. Based on habitat temperatures, the accession occurring at the highest altitude (California) is less likely to be visited by M. sexta, while the others (Arizona, Utah 1, and Utah 2) are known to receive M. sexta pollinations. The accessions varied significantly in flower morphologies, volatile emissions, flower opening, and phenology, traits likely important for M. sexta perception and floral handling. In wind tunnel assays, we assessed the seed set of emasculated flowers after M. sexta visitation and of natural selfed and hand-pollinated selfed flowers. After moth visitations, plants of two accessions (Arizona and Utah 2) produced more capsules than the other two, consistent with predictions that accessions co-occurring with M. sexta would benefit more from the pollination services of this moth. We quantified flower and capsule production in four accessions in a glasshouse assay without pollinators to assess the potential for self-pollination. The two Utah accessions set significantly more seeds after pollen supplementation compared with those of autonomous selfing flowers, suggesting a greater opportunistic benefit from efficient pollinators than the other two. Moreover, emasculated flowers of the accession with the most exposed stigma (Utah 2) produced the greatest seed set after M. sexta visitation. This study reveals intraspecific variation in pollination syndromes that illuminate the potential of a plant species to adapt to local pollinator communities, changing environments, and altered pollination networks

    Uncooled IRFPA developments review

    Get PDF
    Abstract Today, large number of un cooled infrared detector developments are under progress due to the availability of silicon technology that enablesJealization of low cost 2D IR arrays. Development of such a structure involves a lot of trade-offs between the different parameters which characterize these detectors: • infrared flux absorption, • measurement of the temperature increase due to the incoming infrared flux absorption, • thermal insulation between detector and readout circuit, • readout of thermometer temperature variation. These trade-offs explain the number of different approaches that are under worldwide development. We present a rapid survey of the state of the art through these developments. LETlfUR has chosen resistive amorphous silicon as thermometer for his uncooled microbolometer development. After a first phase dedicated to the acquisition of the most important detector parameters in order to help the modeling and the technological development, an IRCMOS laboratory model (256 x 64 with a pitch of 50 I-Im) was realized and characterized. It was shown that NETD of 80 mK at ff1.25 Hz and 300 K background can be obtained with high thermal insulation (1.2 10 7 K/W)

    Neurobiological Correlates of Decision-Making in Framing Conditions

    Get PDF
    Human decision-making is a complex process, of which the neurobiological correlates are not well understood. Several theories have been proposed, among others Prospect theory which assumes a different evaluation of gains and losses of the same value. De Martino et al. tested the influence of the “framing effect” on decision-making and we aimed to replicate their study as some of the findings remained unclear. A general tendency to act in accordance with the frame was shown in a behavioural study. In order to uncover the underlying neural correlates, participants performed the same task in an fMRI scanner. Even though the amygdala could not be linked to framing, increased activity in the ACC when making frame-incongruent decisions was established. This can be related to acting in a more rational manner. Furthermore, activity in the cerebellum was increased when making a choice, indicating the involvement of this brain area in decision-making under uncertainty

    Using computational predictions to improve literature-based Gene Ontology annotations: a feasibility study

    Get PDF
    Annotation using Gene Ontology (GO) terms is one of the most important ways in which biological information about specific gene products can be expressed in a searchable, computable form that may be compared across genomes and organisms. Because literature-based GO annotations are often used to propagate functional predictions between related proteins, their accuracy is critically important. We present a strategy that employs a comparison of literature-based annotations with computational predictions to identify and prioritize genes whose annotations need review. Using this method, we show that comparison of manually assigned ‘unknown’ annotations in the Saccharomyces Genome Database (SGD) with InterPro-based predictions can identify annotations that need to be updated. A survey of literature-based annotations and computational predictions made by the Gene Ontology Annotation (GOA) project at the European Bioinformatics Institute (EBI) across several other databases shows that this comparison strategy could be used to maintain and improve the quality of GO annotations for other organisms besides yeast. The survey also shows that although GOA-assigned predictions are the most comprehensive source of functional information for many genomes, a large proportion of genes in a variety of different organisms entirely lack these predictions but do have manual annotations. This underscores the critical need for manually performed, literature-based curation to provide functional information about genes that are outside the scope of widely used computational methods. Thus, the combination of manual and computational methods is essential to provide the most accurate and complete functional annotation of a genome

    Multiple spillovers from humans and onward transmission of SARS-CoV-2 in white-tailed deer.

    Get PDF
    Many animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and could act as reservoirs; however, transmission in free-living animals has not been documented. White-tailed deer, the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns can transmit the virus. To test the hypothesis that SARS-CoV-2 is circulating in deer, 283 retropharyngeal lymph node (RPLN) samples collected from 151 free-living and 132 captive deer in Iowa from April 2020 through January of 2021 were assayed for the presence of SARS-CoV-2 RNA. Ninety-four of the 283 (33.2%) deer samples were positive for SARS-CoV-2 RNA as assessed by RT-PCR. Notably, following the November 2020 peak of human cases in Iowa, and coinciding with the onset of winter and the peak deer hunting season, SARS-CoV-2 RNA was detected in 80 of 97 (82.5%) RPLN samples collected over a 7-wk period. Whole genome sequencing of all 94 positive RPLN samples identified 12 SARS-CoV-2 lineages, with B.1.2 (n = 51; 54.5%) and B.1.311 (n = 19; 20%) accounting for ∼75% of all samples. The geographic distribution and nesting of clusters of deer and human lineages strongly suggest multiple human-to-deer transmission events followed by subsequent deer-to-deer spread. These discoveries have important implications for the long-term persistence of the SARS-CoV-2 pandemic. Our findings highlight an urgent need for a robust and proactive "One Health" approach to obtain enhanced understanding of the ecology, molecular evolution, and dissemination of SARS-CoV-2

    Molecular characterization of adipose tissue in the African elephant (Loxodonta africana)

    Get PDF
    Adipose tissue (AT) is a dynamic and flexible organ with regulatory roles in physiological functions including metabolism, reproduction and inflammation; secreted adipokines, including leptin, and fatty acids facilitate many of these roles. The African elephant (Loxodonta africana) is experiencing serious challenges to optimal reproduction in captivity. The physiological and molecular basis of this impaired fertility remains unknown. AT production of leptin is a crucial molecular link between nutritional status, adiposity and fertility in many species. We propose that leptin has a similar function in the African elephant. African elephant visceral and subcutaneous adipose tissue (AT) was obtained from both sexes and a range of ages including females with known pregnancy status. RNA was extracted and histological sections created and analyzed by microarray, PCR and immunohistochemistry respectively. Gas-chromatography was used to determine the fatty acid composition of AT. Microarray expression profiling was used to compare gene expression profiles of AT from pre-pubertal versus reproductively competent adult African elephants. This study demonstrates, for the first time, leptin mRNA and protein expression in African elephant AT. The derived protein sequence of the elephant leptin protein was exploited to determine its relationship within the class I helical cytokine superfamily, which indicates that elephant leptin is most closely related to the leptin orthologs of Oryctolagus cuniculus (European rabbit), Lepus oiostolus (woolly hare), and members of the Ochotonidae (Pika). Immunohistological analysis identified considerable leptin staining within the cytoplasm of adipocytes. Significant differences in fatty acid profiles between pregnant and non-pregnant animals were revealed, most notably a reduction in both linoleic and α linoleic acid in pregnant animals. This report forms the basis for future studies to address the effect of nutrient composition and body condition on reproduction in captive and wild elephants

    Measurement of the diffractive structure function in deep inelastic scattering at HERA

    Full text link
    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in epep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of \xpom, the momentum fraction lost by the proton, of β\beta, the momentum fraction of the struck quark with respect to \xpom, and of Q2Q^2. The \xpom dependence is consistent with the form \xpoma where a = 1.30 ± 0.08 (stat)  0.14+ 0.08 (sys)a~=~1.30~\pm~0.08~(stat)~^{+~0.08}_{-~0.14}~(sys) in all bins of β\beta and Q2Q^2. In the measured Q2Q^2 range, the diffractive structure function approximately scales with Q2Q^2 at fixed β\beta. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil

    Viral population estimation using pyrosequencing

    Get PDF
    The diversity of virus populations within single infected hosts presents a major difficulty for the natural immune response as well as for vaccine design and antiviral drug therapy. Recently developed pyrophosphate based sequencing technologies (pyrosequencing) can be used for quantifying this diversity by ultra-deep sequencing of virus samples. We present computational methods for the analysis of such sequence data and apply these techniques to pyrosequencing data obtained from HIV populations within patients harboring drug resistant virus strains. Our main result is the estimation of the population structure of the sample from the pyrosequencing reads. This inference is based on a statistical approach to error correction, followed by a combinatorial algorithm for constructing a minimal set of haplotypes that explain the data. Using this set of explaining haplotypes, we apply a statistical model to infer the frequencies of the haplotypes in the population via an EM algorithm. We demonstrate that pyrosequencing reads allow for effective population reconstruction by extensive simulations and by comparison to 165 sequences obtained directly from clonal sequencing of four independent, diverse HIV populations. Thus, pyrosequencing can be used for cost-effective estimation of the structure of virus populations, promising new insights into viral evolutionary dynamics and disease control strategies.Comment: 23 pages, 13 figure
    corecore