110,120 research outputs found

    Efficiency optimization for Atomic Frequency Comb storage

    Full text link
    We study the efficiency of the Atomic Frequency Comb storage protocol. We show that for a given optical depth, the preparation procedure can be optimize to significantly improve the retrieval. Our prediction is well supported by the experimental implementation of the protocol in a \TMYAG crystal. We observe a net gain in efficiency from 10% to 17% by applying the optimized preparation procedure. In the perspective of high bandwidth storage, we investigate the protocol under different magnetic fields. We analyze the effect of the Zeeman and superhyperfine interaction

    Radar High Resolution Range & Micro-Doppler Analysis of Human Motions

    Get PDF
    In radar imaging it is well known that relative motion or deformation of parts of illuminated objects induce additional features in the Doppler frequency spectra. These features are called micro-Doppler effect and appear as sidebands around the central Doppler frequency. They can provide valuable information about the structure of the moving parts and may be used for identification purposes [1]. Previous papers have mostly focused on ID micro-Doppler analysis [2-4]. In this paper, we propose to emphasize the analysis of such "non stationary targets" using a 2D imaging space, using both the micro-Doppler and a high range resolution analysis. As in 2D-ISAR imaging, range separation enables us to better discriminate the various effects caused by the time varying reflectors. We will focus our study on human motion. We will see how micro-Doppler signature can be used to extract information on pedestrians gait. We will show examples on simulated and experimental data

    Olivines in angrite LEW 87051: Phenos or xenos

    Get PDF
    Nyquist et al. recently reported the presence of live Mn-53 in angrite LEW 86010 when it crystallized. Hence, melting must have occurred within approx. 10 Ma of the accretion of the angrite parent body, and LEW 86010 is the oldest known differentiated meteorite. This discovery has made it even more desirable to understand teh petrogenesis of angrites, which presumably were all formed at a similar time. As part of the continuing work on angrite petrogenesis, crystallization experiments were conducted on LEW 87051, the other Antarctic angrite, to clarify its petrogenesis. Several aspects of the experimental work is reported. Although the details are not understood, it is clear that the Cr abundance in the experimental olivines must be controlled by spinel crystallization

    Bound on the curvature of the Isgur-Wise function of the baryon semileptonic decay Lambda_b -> Lambda_c + l + nu

    Full text link
    In the heavy quark limit of QCD, using the Operator Product Expansion, the formalism of Falk for hadrons or arbitrary spin, and the non-forward amplitude, as proposed by Uraltsev, we formulate sum rules involving the Isgur-Wise function ξΛ(w)\xi_{\Lambda} (w) of the baryon transition ΛbΛcν\Lambda_b \to \Lambda_c \ell \overline{\nu}_{\ell}, where the light cloud has jP=0+j^P=0^+ for both initial and final baryons. We recover the lower bound for the slope ρΛ2=ξΛ(1)0\rho_\Lambda^2 = - \xi '_\Lambda (1) \geq 0 obtained by Isgur et al., and we generalize it by demonstrating that the IW function ξΛ(w)\xi_{\Lambda} (w) is an alternate series in powers of (w1)(w-1), i.e. (1)nξΛ(n)(1)0(-1)^n \xi_{\Lambda}^{(n)} (1) \geq 0. Moreover, exploiting systematically the sum rules, we get an improved lower bound for the curvature in terms of the slope, σΛ2=ξ"Λ(1)35[ρΛ2+(ρΛ2)2]\sigma_\Lambda^2 = \xi "_\Lambda (1) \geq {3 \over 5} [\rho_\Lambda^2 + (\rho_\Lambda^2)^2]. This bound constrains the shape of the Isgur-Wise function and it will be compelling in the analysis of future precise data on the differential rate of the baryon semileptonic decay ΛbΛcν\Lambda_b \to \Lambda_c \ell \overline{\nu}_{\ell}, that has a large measured branching ratio, of about 5%.Comment: 16 page

    Topological Correlations in a Layer Adsorbed on a Crystal Surface

    Get PDF
    The incoherent scattering of electrons by a layer adsorbed at a single crystal surface is determined by the topological correlations of elements forming the adsorbed layer. The model for the description of atoms or molecules adsorbed on the surface is formulated in terms of occupation operators which are expressed in terms of pseudospin operators with a given spin value. The correlations can be determined by the fluctuation dissipation theorem in connection with the susceptibility or given directly by means of the Green functions properly chosen. An example of the topological or chemical disorder of two components is considered in detail. The calculations of the topological correlations allow us to find the incoherent scattering amplitude as a function of the surface coverage which can be experimentally detected.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 zostało dofinansowane ze środków MNiSW w ramach działalności upowszechniającej naukę
    corecore