231,509 research outputs found

    DIS Prospects at the Future Muon Collider Facility

    Get PDF
    We discuss prospects of deep inelastic scattering physics capabilities at the future muon collider facility. In addition to mu^+ mu^- collider itself, the facility provides other possibilities. Among the possibilities, we present muon-proton collider and neutrino fixed target programs at the muon collider facility. This mu-p collider program extends kinematic reach and luminosity by an order of magnitude, increasing the possibility of search for new exotic particles. Perhaps most intriguing DIS prospects come from utilizing high intensity neutrino beam resulting from continuous decays of muons in various sections of the muon collider facility. One of the most interesting findings is a precision measurement of electroweak mixing angle, sin^2theta_W, which can be achieved to the precision equivalent to delta M_W ~ 30 MeV.Comment: 8 pages, 4 figures, To be published in the proceedings of the 6th international workshop on Deep Inelastic Scattering, Brussel, Belgium (1998

    Alternative Derivation of the Hu-Paz-Zhang Master Equation for Quantum Brownian Motion

    Get PDF
    Hu, Paz and Zhang [ B.L. Hu, J.P. Paz and Y. Zhang, Phys. Rev. D {\bf 45} (1992) 2843] have derived an exact master equation for quantum Brownian motion in a general environment via path integral techniques. Their master equation provides a very useful tool to study the decoherence of a quantum system due to the interaction with its environment. In this paper, we give an alternative and elementary derivation of the Hu-Paz-Zhang master equation, which involves tracing the evolution equation for the Wigner function. We also discuss the master equation in some special cases.Comment: 17 pages, Revte

    Assessment criteria for 2D shape transformations in animation

    Get PDF
    The assessment of 2D shape transformations (or morphing) for animation is a difficult task because it is a multi-dimensional problem. Existing morphing techniques pay most attention to shape information interactive control and mathematical simplicity. This paper shows that it is not enough to use shape information alone, and we should consider other factors such as structure, dynamics, timing, etc. The paper also shows that an overall objective assessment of morphing is impossible because factors such as timing are related to subjective judgement, yet local objective assessment criteria, e.g. based on shape, are available. We propose using “area preservation” as the shape criterion for the 2D case as an acceptable approximation to “volume preservation” in reality, and use it to establish cases in which a number of existing techniques give clearly incorrect results. The possibility of deriving objective assessment criteria for dynamics simulations and timing under certain conditions is discussed

    Bayesian analysis of a Tobit quantile regression model

    Get PDF
    This paper develops a Bayesian framework for Tobit quantile regression. Our approach is organized around a likelihood function that is based on the asymmetric Laplace dis- tribution, a choice that turns out to be natural in this context. We discuss families of prior distribution on the quantile regression vector that lead to proper posterior distributions with ¯nite moments. We show how the posterior distribution can be sampled and summarized by Markov chain Monte Carlo methods. A method for com- paring alternative quantile regression models is also developed and illustrated. The techniques are illustrated with both simulated and real data. In particular, in an em- pirical comparison, our approach out-performed two other common classical estimators

    Hamiltonian Reduction of SL(2)SL(2)-theories at the Level of Correlators

    Get PDF
    Since the work of Bershadsky and Ooguri and Feigin and Frenkel it is well known that correlators of SL(2)SL(2) current algebra for admissible representations should reduce to correlators for conformal minimal models. A precise proposal for this relation has been given at the level of correlators: When SL(2)SL(2) primary fields are expressed as ϕj(zn,xn)\phi_j(z_n,x_n) with xnx_n being a variable to keep track of the SL(2)SL(2) representation multiplet (possibly infinitely dimensional for admissible representations), then the minimal model correlator is supposed to be obtained simply by putting all xn=znx_n=z_n. Although strong support for this has been presented, to the best of our understanding a direct, simple proof seems to be missing so in this paper we present one based on the free field Wakimoto construction and our previous study of that in the present context. We further verify that the explicit SL(2)SL(2) correlators we have published in a recent preprint reduce in the above way, up to a constant which we also calculate. We further discuss the relation to more standard formulations of hamiltonian reduction.Comment: 13 pages, LaTe

    Generalized linear isotherm regularity equation of state applied to metals

    Full text link
    A three-parameter equation of state (EOS) without physically incorrect oscillations is proposed based on the generalized Lennard-Jones (GLJ) potential and the approach in developing linear isotherm regularity (LIR) EOS of Parsafar and Mason [J. Phys. Chem., 1994, 49, 3049]. The proposed (GLIR) EOS can include the LIR EOS therein as a special case. The three-parameter GLIR, Parsafar and Mason (PM) [Phys. Rev. B, 1994, 49, 3049], Shanker, Singh and Kushwah (SSK) [Physica B, 1997, 229, 419], Parsafar, Spohr and Patey (PSP) [J. Phys. Chem. B, 2009, 113, 11980], and reformulated PM and SSK EOSs are applied to 30 metallic solids within wide pressure ranges. It is shown that the PM, PMR and PSP EOSs for most solids, and the SSK and SSKR EOSs for several solids, have physically incorrect turning points, and pressure becomes negative at high enough pressure. The GLIR EOS is capable not only of overcoming the problem existing in other five EOSs where the pressure becomes negative at high pressure, but also gives results superior to other EOSs.Comment: 9 pages, 3 figure

    Giant enhanced optical nonlinearity of colloidal nanocrystals with a graded-index host

    Full text link
    The effective linear and third-order nonlinear optical properties of metallic colloidal crystal immersed in a graded-index host fluid are investigated theoretically. The local electric fields are extracted self-consistently based on the layer-to-layer interactions, which are readily given by the Lekner summation method. The resultant optical absorption and nonlinearity enhancement show a series of sharp peaks, which merge in a broadened resonant band. The sharp peaks become a continuous band for increasing packing density and number of layers. We believe that the sharp peaks arise from the in-plane dipolar interactions and the surface plasmon resonance, whereas the continuous band is due to the presence of the gradient in the host refractive index. These results have not been observed in homogeneous and randomly-dispersed colloids, and thus would be of great interest in optical nanomaterial engineering.Comment: Submitted to Applied Physics Letter
    corecore