273,878 research outputs found

    DIS Prospects at the Future Muon Collider Facility

    Get PDF
    We discuss prospects of deep inelastic scattering physics capabilities at the future muon collider facility. In addition to mu^+ mu^- collider itself, the facility provides other possibilities. Among the possibilities, we present muon-proton collider and neutrino fixed target programs at the muon collider facility. This mu-p collider program extends kinematic reach and luminosity by an order of magnitude, increasing the possibility of search for new exotic particles. Perhaps most intriguing DIS prospects come from utilizing high intensity neutrino beam resulting from continuous decays of muons in various sections of the muon collider facility. One of the most interesting findings is a precision measurement of electroweak mixing angle, sin^2theta_W, which can be achieved to the precision equivalent to delta M_W ~ 30 MeV.Comment: 8 pages, 4 figures, To be published in the proceedings of the 6th international workshop on Deep Inelastic Scattering, Brussel, Belgium (1998

    Alternative Derivation of the Hu-Paz-Zhang Master Equation for Quantum Brownian Motion

    Get PDF
    Hu, Paz and Zhang [ B.L. Hu, J.P. Paz and Y. Zhang, Phys. Rev. D {\bf 45} (1992) 2843] have derived an exact master equation for quantum Brownian motion in a general environment via path integral techniques. Their master equation provides a very useful tool to study the decoherence of a quantum system due to the interaction with its environment. In this paper, we give an alternative and elementary derivation of the Hu-Paz-Zhang master equation, which involves tracing the evolution equation for the Wigner function. We also discuss the master equation in some special cases.Comment: 17 pages, Revte

    Assessment criteria for 2D shape transformations in animation

    Get PDF
    The assessment of 2D shape transformations (or morphing) for animation is a difficult task because it is a multi-dimensional problem. Existing morphing techniques pay most attention to shape information interactive control and mathematical simplicity. This paper shows that it is not enough to use shape information alone, and we should consider other factors such as structure, dynamics, timing, etc. The paper also shows that an overall objective assessment of morphing is impossible because factors such as timing are related to subjective judgement, yet local objective assessment criteria, e.g. based on shape, are available. We propose using “area preservation” as the shape criterion for the 2D case as an acceptable approximation to “volume preservation” in reality, and use it to establish cases in which a number of existing techniques give clearly incorrect results. The possibility of deriving objective assessment criteria for dynamics simulations and timing under certain conditions is discussed

    Tunable Localization and Oscillation of Coupled Plasmon Waves in Graded Plasmonic Chains

    Full text link
    The localization (confinement) of coupled plasmon modes, named as gradons, has been studied in metal nanoparticle chains immersed in a graded dielectric host. We exploited the time evolution of various initial wavepackets formed by the linear combination of the coupled modes. We found an important interplay between the localization of plasmonic gradons and the oscillation in such graded plasmonic chains. Unlike in optical superlattices, gradient cannot always lead to Bloch oscillations, which can only occur for wavepackets consisting of particular types of gradons. Moreover, the wavepackets will undergo different forms of oscillations. The correspondence can be applied to design a variety of optical devices by steering among various oscillations.Comment: Sumitted to Journal of Applied Physic

    Bayesian analysis of a Tobit quantile regression model

    Get PDF
    This paper develops a Bayesian framework for Tobit quantile regression. Our approach is organized around a likelihood function that is based on the asymmetric Laplace dis- tribution, a choice that turns out to be natural in this context. We discuss families of prior distribution on the quantile regression vector that lead to proper posterior distributions with ¯nite moments. We show how the posterior distribution can be sampled and summarized by Markov chain Monte Carlo methods. A method for com- paring alternative quantile regression models is also developed and illustrated. The techniques are illustrated with both simulated and real data. In particular, in an em- pirical comparison, our approach out-performed two other common classical estimators

    Hamiltonian Reduction of SL(2)SL(2)-theories at the Level of Correlators

    Get PDF
    Since the work of Bershadsky and Ooguri and Feigin and Frenkel it is well known that correlators of SL(2)SL(2) current algebra for admissible representations should reduce to correlators for conformal minimal models. A precise proposal for this relation has been given at the level of correlators: When SL(2)SL(2) primary fields are expressed as ϕj(zn,xn)\phi_j(z_n,x_n) with xnx_n being a variable to keep track of the SL(2)SL(2) representation multiplet (possibly infinitely dimensional for admissible representations), then the minimal model correlator is supposed to be obtained simply by putting all xn=znx_n=z_n. Although strong support for this has been presented, to the best of our understanding a direct, simple proof seems to be missing so in this paper we present one based on the free field Wakimoto construction and our previous study of that in the present context. We further verify that the explicit SL(2)SL(2) correlators we have published in a recent preprint reduce in the above way, up to a constant which we also calculate. We further discuss the relation to more standard formulations of hamiltonian reduction.Comment: 13 pages, LaTe

    High quality graph-based similarity search

    Get PDF
    SimRank is an influential link-based similarity measure that has been used in many fields of Web search and sociometry. The best-of-breed method by Kusumoto et. al., however, does not always deliver high-quality results, since it fails to accurately obtain its diagonal correction matrix D. Besides, SimRank is also limited by an unwanted "connectivity trait": increasing the number of paths between nodes a and b often incurs a decrease in score s(a,b). The best-known solution, SimRank++, cannot resolve this problem, since a revised score will be zero if a and b have no common in-neighbors. In this paper, we consider high-quality similarity search. Our scheme, SR#, is efficient and semantically meaningful: (1) We first formulate the exact D, and devise a "varied-D" method to accurately compute SimRank in linear memory. Moreover, by grouping computation, we also reduce the time of from quadratic to linear in the number of iterations. (2) We design a "kernel-based" model to improve the quality of SimRank, and circumvent the "connectivity trait" issue. (3) We give mathematical insights to the semantic difference between SimRank and its variant, and correct an argument: "if D is replaced by a scaled identity matrix, top-K rankings will not be affected much". The experiments confirm that SR# can accurately extract high-quality scores, and is much faster than the state-of-the-art competitors

    Generalized linear isotherm regularity equation of state applied to metals

    Full text link
    A three-parameter equation of state (EOS) without physically incorrect oscillations is proposed based on the generalized Lennard-Jones (GLJ) potential and the approach in developing linear isotherm regularity (LIR) EOS of Parsafar and Mason [J. Phys. Chem., 1994, 49, 3049]. The proposed (GLIR) EOS can include the LIR EOS therein as a special case. The three-parameter GLIR, Parsafar and Mason (PM) [Phys. Rev. B, 1994, 49, 3049], Shanker, Singh and Kushwah (SSK) [Physica B, 1997, 229, 419], Parsafar, Spohr and Patey (PSP) [J. Phys. Chem. B, 2009, 113, 11980], and reformulated PM and SSK EOSs are applied to 30 metallic solids within wide pressure ranges. It is shown that the PM, PMR and PSP EOSs for most solids, and the SSK and SSKR EOSs for several solids, have physically incorrect turning points, and pressure becomes negative at high enough pressure. The GLIR EOS is capable not only of overcoming the problem existing in other five EOSs where the pressure becomes negative at high pressure, but also gives results superior to other EOSs.Comment: 9 pages, 3 figure
    corecore